No Slide Title

Download Report

Transcript No Slide Title

The Fourier Transform
Chapter 5
Extending the CTFS
• The CTFS is a good analysis tool for systems
with periodic excitation but the CTFS cannot
represent an aperiodic signal for all time
• The continuous-time Fourier transform
(CTFT) can represent an aperiodic signal for
all time
7/21/2015
M. J. Roberts - All Rights Reserved
2
CTFS-to-CTFT Transition
w
Consider a periodic pulse-train signal, x(t), with duty cycle,
T0
Aw
kw 
sinc  
Its CTFS harmonic function is Xk  
T0
 T0 
As the period, T0 , is increased, holding w constant, the duty
cycle is decreased. When the period becomes infinite (and
the duty cycle becomes zero) x(t) is no longer periodic.
7/21/2015
M. J. Roberts - All Rights Reserved
3
CTFS-to-CTFT Transition
Below are plots of the magnitude of X[k] for 50% and 10% duty
cycles. As the period increases the sinc function widens and its
magnitude falls. As the period approaches infinity, the CTFS
harmonic function becomes an infinitely-wide sinc function with
zero amplitude.
T0
w
2
7/21/2015
M. J. Roberts - All Rights Reserved
T0
w
10
4
CTFS-to-CTFT Transition
This infinity-and-zero problem can be solved by normalizing
the CTFS harmonic function. Define a new “modified” CTFS
harmonic function,
T0 Xk   Aw sinc wkf0 
and graph it versus kf0 instead of versus k.
7/21/2015
M. J. Roberts - All Rights Reserved
5
CTFS-to-CTFT Transition
In the limit as the period approaches infinity, the modified
CTFS harmonic function approaches a function of continuous
frequency f ( kf0 ).
7/21/2015
M. J. Roberts - All Rights Reserved
6
Definition of the CTFT
Forward
X f   F xt  

 j2 ft
x

t

e
dt

xt   F

Forward
X j   F xt  


Inverse
f form

X f    X f e  j 2ft df
-1

 form
xt e jt dt

Inverse

1
-1
 jt
xt   F X j  
X

j


e
d

2 
Commonly-used notation:
F
xt 

X f 
7/21/2015
or
F
xt 

X j 
M. J. Roberts - All Rights Reserved
7
Some Remarkable Implications
of the Fourier Transform
The CTFT expresses a finite-amplitude, real-valued, aperiodic
signal which can also, in general, be time-limited, as a summation
(an integral) of an infinite continuum of weighted, infinitesimalamplitude, complex sinusoids, each of which is unlimited in
time. (Time limited means “having non-zero values only for a
finite time.”)
7/21/2015
M. J. Roberts - All Rights Reserved
8
Frequency Content
Highpass
Lowpass
Bandpass
7/21/2015
M. J. Roberts - All Rights Reserved
9
Convergence and the
Generalized Fourier Transform
Let xt   A . Then from the
definition of the CTFT,
X f  




Ae  j 2ft dt  A  e j 2ft dt

This integral does not converge so,
strictly speaking, the CTFT does not
exist.
7/21/2015
M. J. Roberts - All Rights Reserved
10
Convergence and the Generalized
Fourier Transform
But consider a similar function,
x  t   Ae   t ,   0
Its CTFT integral,
X  f  


Ae  t e  j2ft dt

does converge.
7/21/2015
M. J. Roberts - All Rights Reserved
11
Convergence and the
Generalized Fourier Transform
2
Carrying out the integral, X  f   A 2
2 .
  2f 
Now let  approach zero.
2
If f  0 then lim A 2
2  0 . The area under this
 0   2f 
function is

2
Area  A  2
2 df
   2f 
which is A, independent of the value of . So, in the limit as
 approaches zero, the CTFT has an area of A and is zero unless
. This exactly defines an impulse of strength, A.
f 0
Therefore
F
A 

A  f 
7/21/2015
M. J. Roberts - All Rights Reserved
12
Convergence and the
Generalized Fourier Transform
By a similar process it can be shown that
1
cos2f0 t 
   f  f0    f  f0 
2
F
and
j
sin2f0 t 
   f  f0    f  f0 
2
F
These CTFT’s which involve impulses are called
generalized Fourier transforms.
7/21/2015
M. J. Roberts - All Rights Reserved
13
Convergence and the Generalized
Fourier Transform
7/21/2015
M. J. Roberts - All Rights Reserved
14
Negative Frequency
This signal is obviously a sinusoid. How is it described
mathematically?
It could be described by
2t 
xt   Acos   A cos2f0t 
 T0 
But it could also be described by
xt   Acos2  f0 t 
7/21/2015
M. J. Roberts - All Rights Reserved
15
Negative Frequency
x(t) could also be described by
e j 2f0 t  e  j2 f 0 t
xt   A
2
or
xt   A1 cos2f0t   A2 cos2  f0 t  , A1  A2  A
and probably in a few other different-looking ways. So who is
to say whether the frequency is positive or negative? For the
purposes of signal analysis, it does not matter.
7/21/2015
M. J. Roberts - All Rights Reserved
16
CTFT Properties
If F xt   X f  or X j  and F yt   Y f  or Y j 
then the following properties can be proven.
Linearity
7/21/2015
F
 xt    yt 

 X f    Y f 
F
 xt    yt 

 X j    Y j 
M. J. Roberts - All Rights Reserved
17
CTFT Properties
Time Shifting
xt  t 0 
X f e j 2ft 0
F
xt  t 0 
X j e jt0
F
7/21/2015
M. J. Roberts - All Rights Reserved
18
CTFT Properties
Frequency Shifting
xt e  j2 f0 t 
X f  f0 
F
xt e  j 0 t 
X   0 
F
7/21/2015
M. J. Roberts - All Rights Reserved
19
CTFT Properties
1  f 
xat 
 X
a a 
1   
F
xat 
 X j
a  a 
F
Time Scaling
1 t  F
x

Xaf 


a a
Frequency Scaling
7/21/2015
1 t  F
x

X ja 
a a 
M. J. Roberts - All Rights Reserved
20
The “Uncertainty” Principle
The time and frequency scaling properties indicate that if a signal
is expanded in one domain it is compressed in the other domain.
This is called the “uncertainty principle” of Fourier analysis.
e
t 2
f 2

e
F
2
e
t 

2 
7/21/2015
  2 f 2

2e
F
M. J. Roberts - All Rights Reserved
21
CTFT Properties
F
x *t 

X*  f 
Transform of
a Conjugate
F
x *t 

X *  j 
F
xt  yt 

X f Y f 
MultiplicationConvolution
Duality
F
xt  yt 

X j Y j 
F
xt yt 

X f  Y f 
1
xt yt 
 X j  Y j 
2
F
7/21/2015
M. J. Roberts - All Rights Reserved
22
CTFT Properties
7/21/2015
M. J. Roberts - All Rights Reserved
23
CTFT Properties
An important consequence of multiplication-convolution
duality is the concept of the transfer function.
In the frequency domain, the cascade connection multiplies
the transfer functions instead of convolving the impulse
responses.
7/21/2015
M. J. Roberts - All Rights Reserved
24
CTFT Properties
Time
Differentiation
Modulation
Transforms of
Periodic Signals
d
F

j2f X f 
xt 
dt
d
F

j X j 
xt 
dt
1
F
xt cos2f0 t 

 X f  f0  X f  f0 
2
1
F
xt cos 0t 
 X j   0  Xj   0 
2

xt  
xt  

 Xke
k 

 Xke
 j 2  kfF t
 j  k F t


X f  
F
 Xk  f  kf 
k 

X j   2
F
k 
7/21/2015

M. J. Roberts - All Rights Reserved
0

 Xk    k 
0
k 
25
CTFT Properties
7/21/2015
M. J. Roberts - All Rights Reserved
26
CTFT Properties


 xt  dt   X f  df
2

Parseval’s
Theorem
Integral Definition
of an Impulse

2


1
2
 xt  dt  2  X j  df


2
e j2 xydy   x

F
F
Xt 

x f  and Xt 

x f 
Duality
7/21/2015
F
F
X jt 

2 x  and X jt 

2 x 
M. J. Roberts - All Rights Reserved
27
CTFT Properties
Total-Area
Integral



X0    xt e  j2 ft dt    xt dt

f 0 



x0   X f e  j 2ft df    X f df

t0 



X0   xt e  jt dt    xt dt

 0 

 1 

1
x0    X j e jt d  
X j d

2 
t0 2 
X f  1
 x d j2f  2 X0  f 
t
F
Integration
X j 
 x d  j   X0 
t
F
7/21/2015
M. J. Roberts - All Rights Reserved
28
CTFT Properties
X0  

 xt dt

x0  

 X f df

7/21/2015
M. J. Roberts - All Rights Reserved
29
CTFT Properties
7/21/2015
M. J. Roberts - All Rights Reserved
30
Extending the DTFS
• Analogous to the CTFS, the DTFS is a good
analysis tool for systems with periodic
excitation but cannot represent an aperiodic
DT signal for all time
• The discrete-time Fourier transform (DTFT)
can represent an aperiodic DT signal for all
time
7/21/2015
M. J. Roberts - All Rights Reserved
31
DTFS-to-DTFT Transition
DT Pulse Train
This DT periodic rectangular-wave signal is analogous to the
CT periodic rectangular-wave signal used to illustrate the
transition from the CTFS to the CTFT.
7/21/2015
M. J. Roberts - All Rights Reserved
32
DTFS-to-DTFT Transition
DTFS of
DT Pulse Train
As the period of the
rectangular wave
increases, the period of
the DTFS increases
and the amplitude of
the DTFS decreases.
7/21/2015
M. J. Roberts - All Rights Reserved
33
DTFS-to-DTFT Transition
Normalized
DTFS of
DT Pulse Train
By multiplying the
DTFS by its period and
plotting versus kF0
instead of k, the
amplitude of the DTFS
stays the same as the
period increases and
the period of the
normalized DTFS
stays at one.
7/21/2015
M. J. Roberts - All Rights Reserved
34
DTFS-to-DTFT Transition
The normalized DTFS approaches this limit as the DT
period approaches infinity.
7/21/2015
M. J. Roberts - All Rights Reserved
35
Definition of the DTFT
F Form
Inverse
xn  XF e
1
Inverse
j 2Fn
dF 
XF  
F
Forward

 j 2Fn
x
n
e



n
 Form
Forward

1
F
jn
 jn
xn
X

j

e
d



X

j


x
n
e



2 2
n
7/21/2015
M. J. Roberts - All Rights Reserved
36
DTFT Properties
Linearity
7/21/2015
F
 xn    yn 

 XF    YF 
F
 xn    yn 

 X j   Y j
M. J. Roberts - All Rights Reserved
37
DTFT Properties
Time
Shifting
7/21/2015
xn  n0 
e  j 2Fn 0 XF 
F
xn  n0 
e  jn0 X j
F
M. J. Roberts - All Rights Reserved
38
DTFT Properties
Frequency
Shifting
Time
Reversal
7/21/2015
e j2 F0 n xn
XF  F0 
F
e j 0n xn 
Xj   0 
F
F
xn 

XF 
F
xn 

X j
M. J. Roberts - All Rights Reserved
39
DTFT Properties
Differencing
7/21/2015
F
xn xn 1

1  e j 2F XF 
F
xn xn 1

1  e j X j
M. J. Roberts - All Rights Reserved
40
DTFT Properties
XF 
1
 xm 1 e j2F  2 X0combF
m
n
X j 1
  
F
 xm 1 e j  2 X0comb2 
m
n
F
Accumulation
7/21/2015
M. J. Roberts - All Rights Reserved
41
DTFT Properties
F
xn  yn 

XF YF 
MultiplicationConvolution
Duality
F
xn  yn 

X jY j
F
xn yn

XF 
YF 
1
xn yn
 X j Y j
2
F
As in other transforms, convolution in the time domain is
equivalent to multiplication in the frequency domain
7/21/2015
M. J. Roberts - All Rights Reserved
42
DTFT Properties
7/21/2015
M. J. Roberts - All Rights Reserved
43
DTFT Properties
Accumulation
Definition of a
Comb Function

j 2Fn
e
 combF 

n

Parseval’s
Theorem

n

xn   XF  dF
2
1
 xn
n
2
2
1
2

X

j

d

2 2
The signal energy is proportional to the integral of the
squared magnitude of the DTFT of the signal over one
period.
7/21/2015
M. J. Roberts - All Rights Reserved
44
The Four Fourier Methods
7/21/2015
M. J. Roberts - All Rights Reserved
45
Relations Among Fourier Methods
Discrete Frequency
Continuous Frequency
CT
DT
7/21/2015
M. J. Roberts - All Rights Reserved
46
CTFT - CTFS Relationship
X f  

 Xk f  kf 
k 
7/21/2015
M. J. Roberts - All Rights Reserved
0
47
CTFT - CTFS Relationship
X pk   f p Xkf p 
7/21/2015
M. J. Roberts - All Rights Reserved
48
CTFT - DTFT Relationship
1
 t  
Let x  t   xt  comb     xnTs  t  nTs 
Ts
Ts  n
and let xn   xnTs 
There is an “information equivalence” between x t 
and xn . They are both completely described by
the same set of numbers.
X DTFT F   X  fs F 
X DTFT F   fs
7/21/2015
 f 
X   f   X DTFT  
 f s 

 X  f F  k
k 
CTFT
s
M. J. Roberts - All Rights Reserved
49
CTFT - DTFT Relationship
7/21/2015
M. J. Roberts - All Rights Reserved
50
DTFS - DTFT Relationship
XF  

 Xk  F  kF 
k 
7/21/2015
M. J. Roberts - All Rights Reserved
0
51
DTFS - DTFT Relationship
1
X p k  
XkFp 
Np
7/21/2015
M. J. Roberts - All Rights Reserved
52