group31_presentation_final.pptx

Download Report

Transcript group31_presentation_final.pptx

HIGH-POWERED MICROWAVE SYSTEMS
for
BOOST PHASE INTERCEPT
Justin Fraize, Chris Horgan, Matt Sirocki
Major Qualifying Project
October 13, 2010
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Project Task Assignment
Project Primary Tasks
1. Research current state of the art of high-powered microwaves
(HPMs)
2. Conduct a Coverage-Based Analysis
– Ground-Based
Range of systems w/atmospheric attenuation
Installments required to defend against rogue states
Parameter combinations for specific downranges
– Space-Based
Range of systems w/o atmospheric attenuation
Satellites required for global coverage
3. Draw Conclusions of Feasibility/Interest
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 2
Presentation Outline
•
Ballistic Missile Defense
•
Vulnerability Models
•
System Considerations
•
Ground/Regional Deployment
•
Space/Global Deployment
•
Conclusions and Future Work
–
–
–
–
–
–
–
–
Current National Missile Defense System
High-Powered Microwaves (HPMs)
Baseline Capability Research
Parameters Considered
Parameter Dependencies
Critical Range Explained
Methods/Results
Methods/Results
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 3
Ballistic Missile Defense
National Missile Defense
• Layered Strategic Defense
– Ground-based Interceptor Missiles
– Sea-Based Aegis System
– Terminal High-Altitude Area Defense
(THAAD)
– Airborne Systems (Boeing YAL-1)
• Focused on Mid-Course Defense
• Airborne Laser Is Only System with
Boost Phase Capability
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 4
Ballistic Missile Defense
High-Powered Microwave (HPM) System
• Method of Action
– Disruption of Navigational Electronics
via High Power, Short (Low Energy)
Pulses of Electromagnetic Radiation
– Aims for “Soft” Mission Kill
• Effective in Boost Phase
• Two Deployment Scenarios Considered:
– Ground: Localized Theater Defense
– Space: Complete Global Coverage
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 5
Vulnerability Models
Baseline Capability Research
• Must deliver minimum intensity on target
– Ranges from 10-3 to 106 (Watts/meters2) - 9 Orders of Magnitude
Source: Federation of American Scientists and Unites States Air Force
• Vulnerability Models Correspond to 0.01, 10, and 100,000 W/m2
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 6
Vulnerability Models
Parameters Considered
• Three Vulnerability Models Considered
– Parameters balanced between current technology and predicated
future capabilities
Vulnerability Model
System Parameter
Model #1
Model #2
Model #3
Operating Frequency
100 GHz
100 GHz
100 GHz
3m
3m
5m
50 GW
50 GW
100 GW
0.01 W/m2
10 W/m2
100,000 W/m2
40 dB
40 dB
30 dB
100 km
100 km
100 km
Antenna Diameter
Source Power
Required Intensity
Electromagnetic Shielding
Critical Altitude
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 7
Vulnerability Models
System Power Considered
• High System Power: ≈50-100 Gigawatts
• 10,000 - 100,000 times more power than Boeing YAL-1
– COIL assumed to operate at one megawatt
• More power than the Hoover Dam at peak generation
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 8
Vulnerability Models
System Energy Considered
• Low System Energy: ≈2500-5000 Joules
(50 ns pulse)
• 1,000 - 2,000 times less energy than Boeing YAL-1
– COIL assumed to operate at one megawatt for five seconds
• Less energy than combusting one gram of gasoline
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 9
System Considerations
Parameter Relationships to Maximum Range
Positive Correlation
Negative Correlation
,
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 10
System Considerations
Core Values
Core Values
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
Maximum Range
Deployed System
Earth
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 11
System Considerations
Operating Frequency - 75% Increase
Core Values
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
Modified Range
Core Range
Modified Values
𝒇 = 𝟏𝟒𝟎 𝑮𝑯𝒛
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
Earth
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 12
System Considerations
Antenna Diameter - 75% Increase
Core Values
Modified Values
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
𝑓 = 80 𝐺𝐻𝑧
𝑫 = 𝟓. 𝟐𝟓 𝒎
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
Earth
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 13
System Considerations
Source Power - 75% Increase
Core Values
Modified Values
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑷 = 𝟖𝟕. 𝟓 𝑮𝑾
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
Earth
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 14
System Considerations
Electromagnetic Shielding - 75% Increase
Core Values
Modified Values
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑺 = 𝟕𝟎 𝒅𝑩
𝐼 = 0.01 𝑊/𝑚2
Modified Range
Earth
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 15
System Considerations
Intensity On Target - 75% Increase
Core Values
Modified Values
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝐼 = 0.01 𝑊/𝑚2
𝑓 = 80 𝐺𝐻𝑧
𝐷 = 3𝑚
𝑃 = 50 𝐺𝑊
𝑆 = 40 𝑑𝐵
𝑰 = 𝟎. 𝟎𝟏𝟕𝟓 𝑾/𝒎𝟐
Earth
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 16
System Considerations
Effective Range
• Definition: Maximum range bounded at Critical Cutoff Altitude
• Critical Cutoff Altitude
– Altitude corresponding to the latest time in boost when disruption of
missile navigational systems would result in a mission kill
[Distances Not To Scale]
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 17
System Considerations
Atmospheric Attenuation
• Integration of attenuation factors along line of firing
– Only considered 0 km – 18 km
• Greatest for angles close to 0°
[Distances Not To Scale]
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 18
Analysis Results
Output Clarification
• Focusing on Vulnerability Model #2
– Intensity required to disrupt most consumer electronics devices
Vulnerability Model
System Parameter
Model #1
Model #2
Model #3
Operating Frequency
100 GHz
100 GHz
100
GHz
100 GHz
3m
3m
5m
50 GW
50 GW
100 GW
0.01 W/m2
10 W/m2
100,000 W/m2
40 dB
40 dB
30 dB
100 km
100 km
100
km
100 km
Antenna Diameter
Source Power
Required Intensity
Electromagnetic Shielding
Critical Altitude
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 19
Ground/Regional Deployment
Sweeping Antenna Diameter
Core Values
Swept Values
𝑓 = 100 𝐺𝐻𝑧
D = 5 𝑚𝑒𝑡𝑒𝑟𝑠
𝐷 = 3𝑚
D = 4 𝑚𝑒𝑡𝑒𝑟𝑠
𝑃 = 50 𝐺𝑊
D = 3 𝑚𝑒𝑡𝑒𝑟𝑠
𝑆 = 40 𝑑𝐵
D = 2 𝑚𝑒𝑡𝑒𝑟𝑠
𝐼 = 10 𝑊/𝑚2
D = 1 𝑚𝑒𝑡𝑒𝑟
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 20
Ground/Regional Deployment
Coverage Maps
Iran
• Requires four systems
– Downranges: 617 – 655 km
North Korea
• Requires one system
– Downrange: 394 km
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 21
Space/Global Deployment
Polar Orbits – Lines of Longitude
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 22
Space/Global Deployment
Hex-Packed Satellite Rings
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 23
Space/Global Deployment
Space-Based Results
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 24
Conclusions and Future Work
• Vulnerability Model 1
–
Trivial
• Vulnerability Model 2
–
–
Space-Basing: Expensive – Hundreds of orbital platforms required
Ground-Basing: Promising – Few stations required for small countries
• Vulnerability Model 3
–
Necessitates technological advances
• Future Work
– ICBM’s in-flight response to an applied HPM
Specific intensity on target requirements
Empirical electromagnetic shielding data
– Effective range as a function of second order effects
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 25
Questions?
Thank you.
MIT Lincoln Laboratory
Version 3 - 7/27/2016
Slide: 26