下載/瀏覽

Download Report

Transcript 下載/瀏覽

Synthesis and characterization of
chitosan-g-poly(acrylic acid)/attapulgite
superabsorbent composites
Junping Zhang a,b, Qin Wang a,b, Aiqin Wang a,*
Carbohydrate Polymers 68 (2007) 367–374
指導教授:林鴻儒 博士
姓名:徐楓茜
日期:98.08.14
Outline
•
•
•
•
•
Introduction
Materials
Experimental
Results and discussion
Conclusions
Introduction
• 親水性的網狀高分子,可把水份鎖在裡面,不易流失。像
傳統的吸水性材料如海綿,棉和紙漿等。這些高吸水性材
料廣泛的應用在衛生產品,園藝,藥物釋放,煤炭脫水,
然而這些材料都容易降解,對環境有影響。
• 因此Kiatkamjornwong等人利用親水性單體乙烯基接枝在天
然高分子澱粉及Chitosan側鏈上的-NH2及-OH,使其水膠
具有吸水之性質。
• 現今Chitosan廣泛的應用於生醫材料,且具有較好的生物
相容性。
• 因此利用高吸水性材料丙烯酸接枝Chitosan,不僅可以改
善生物降解的問題,且材料也具有吸水的特點。
Introduction
• 近年來,Clay常應用於與吸水性材料做結合,來改善其膨
潤性質與降低成本並可加強水膠之強度。
Material
•
•
•
•
•
Acrylic acid (AA)
ammonium persulfate (APS)
N,N’-methylenebisacrylamide (MBA)
Chitosan (CTS)
Attapulgite (APT)
Experimental - different MW
2 g CTS
40 ml distilled water
30% H2O2(0.3, 1.0, 3.7, 9.4ml)
Stirred and kept at 50℃, 2h
Suspension
Average molecular weight of CTS
was determined by viscometry
measurement
Filtrated
Solid (washed)
Solid
Washed with
distilled water
to pH=7
Solid
Dried under
vacuum at 50℃
Preparation of CTS-g-PAA/APT
1% acetic acid solution 30ml
CTS
In the 250 ml four-neck flask, equipped
with a mechanical stirrer, a reflux
condenser, a funnel and a nitrogen line
Purged with nitrogen for 30 min
to remove oxygen
and heated to 60 ℃
0.10 g APS
10 min
3.55 g AA
MBA and APT
The water
bath, kept
60℃, 3h
Use 40-80 mesh milled
Spread on a dish to dry
overnight at room temperature
Use filter paper wiping off
excessive dewatering agents
Transferred 1M
NaOH aqueous
solution to be
neutralized to pH=7,
dried in oven or
dewatering agents,
methanol, ethanol
and acetone
Results and discussion
COOH COO- C-H
C-H
OH
C3-OH
C=O
-NH2 -NHCO
C-H
C6-OH
COOCOO-
Si-OH
Fig. 2. IR spectra of (a) APT, (b) uncrosslinked CTS-g-PAA/APT, (c) CTS, (d) CTS-g-PAA and
(e) CTS-g-PAA/APT. Weight ratio of AA to CTS is 7.2; average molecular weight of CTS is
22.9*104; MBA content is 2.94 wt%; APT content is 10 wt%; dewatered with methanol.
381.7℃
578.4℃
604.3℃
Fig. 3. TGA curves of CTS-g-PAA and CTS-g-PAA/APT. Weight ratio of AA to CTS is 7.2;
average molecular weight of CTS is 22.9*104; MBA content is 2.94 wt%; APT content is 10 wt%;
dewatered with methanol.
Fig. 4. SEM micrographs of (a) APT, (b) CTS-g-PAA and (c) CTS-g-PAA/APT superabsorbent
composite. Weight ratio of AA to CTS is 7.2; average molecular weight of CTS is 22.9*104;
MBA content is 2.94 wt%; APT content is 10 wt%; dewatered with methanol.
Fig. 5. Variation of water absorbency for the
CTS-g-PAA/APT superabsorbent with
average molecular weight of CTS. Weight
ratio of AA to CTS is 7.2; MBA content is
2.94 wt%; APT content is 10 wt%; dewatered
with methanol.
Fig. 6. Variation of water absorbency for the
CTS-g-PAA/APT superabsorbent composite
with MBA content. Weight ratio of AA to
CTS is 7.2; average molecular weight of
CTS is 22.9*104; APT content is 10 wt%;
dewatered with methanol.
Fig. 7. Variation of water absorbency for
the CTS-g-PAA/APT superabsorbent
composite with weight ratio of AA to
CTS. Average molecular weight of CTS
is 22.9*104; MBA content is 2.94 wt%;
APT content is 10 wt%; dewatered with
methanol.
Fig. 8. Variation of water absorbency for the
CTS-g-PAA/APT superabsorbent composite
with weight ratio of AA to CTS. Weight ratio of
AA to CTS is 7.2; average molecular weight of
CTS is 22.9*104; MBA content is 2.94 wt%;
dewatered with methanol.
Fig. 9. Variation of water absorbency for the CTS-g-PAA/APT superabsorbent composite with
dewatering agents. Weight ratio of AA to CTS is 7.2; average molecular weight of CTS is
22.9 *104; MBA content is 2.94 wt%; APT content is 30 wt%.
Conclusion
• CTS, AA and APT接枝聚合後,使用NaOH
中和,可得到新穎的超吸水複合材料。
• CTS的 -OH, -NH2, -NHCO和APT的-OH會與
AA接枝聚合成水膠。
• 以TGA和SEM觀察其材料可看出,添加
APT後,可以增加材料的熱穩定性及其網狀
結構的孔洞會更加緊實。
• 少量的APT可改善CTS-g-PAA的吸水性。