Transcript 추가3
Chapter 3
Water: The Matrix of Life
Overview
Section 3.1: Molecular Structure of Water
Section 3.2: Noncovalent Bonding
Section 3.3: Thermal Properties of Water
Section 3.4: Solvent Properties of Water
Section 3.5: Ionization of Water
3.1 물의 분자구조
-산소원자가 sp3혼성으로 사면체 기하학구조(그림3.1)
-산소의 전기음성도가 더 커 전자를 자기;쪽으로, 부분적인 음전하 (그림3.2)
극성(전자의 분포가 비대칭)
-물분자는 구부러져 104.50 (그림3.3)
-전하가 분리된 쌍극자여서 전기장에서 반대방향(그림3.4)
-수소결합: 극성 분자사이의 정전기적 상호작용(그림3.5)
Section 3.1: Molecular Structure of Water
Water is essential for life
Water’s important properties include:
Chemical stability
Remarkable solvent properties
Role as a biochemical reactant
Hydration
Section 3.1: Molecular Structure of Water
Water has a tetrahedral
geometry
Oxygen is more electronegative
than hydrogen
Figure 3.1 Tetrahedral
Structure of Water
Section 3.1: Molecular Structure of Water
Larger oxygen atom has partial negative charge
(d-) and hydrogen atoms have partial positive
charges (d+)
Figure 3.2 Charges on a Water Molecule
Figure 3.3 Water Molecule
Section 3.1: Molecular Structure of Water
Bond between oxygen and hydrogen is polar
Water is a dipole because the positive and
negative charges are separate
Figure 3.4 Molecular
Dipoles in an Electric
Field
Section 3.1: Molecular Structure of Water
An electron-deficient hydrogen
of one water is attracted to the
unshared electrons of water
forming a hydrogen bond
Can occur with oxygen,
nitrogen, and fluorine
Has electrostatic (i.e., opposite
charges) and covalent (i.e.,
electron sharing) characteristics
Figure 3.5 Hydrogen Bond
3.2 비공유결합
-약한 결합(표3.1)
-생체분자의구조와 기능에 영향줌
(1)이온화 상호작용
-상반된 전하를 띤 원자나 화합그룹사이
-NaCl,
-양전하, 음전하 아미노산곁사슬의 인력을 염다리 혹은 반발력: 단백질접힘,
효소작용, 분자인식 등
(2)수소결합
-수소와 산소, 질소 또는 유황사이의 공유결합은 매우 극성이어, 수소원자가
인접된 O, N, S에 약하게 끌림(그림3.6)
-물은 3차원적으로 집합체를 이룸; 높은 끓는점, 녹는점, 기화열
Section 3.2: Noncovalent Bonding
Noncovalent interactions are electrostatic
Weak individually, but play vital role in biomolecules
because of cumulative effects
Section 3.2: Noncovalent Bonding
Three most important noncolvalent bonds:
Ionic interactions
Van der Waals forces
Hydrogen bonds
Section 3.2: Noncovalent Bonding
Ionic Interactions
Oppositely charged ions attract one another
Ionized amino acid side chains can form salt bridges
with one another
Biochemistry primarily investigates the interaction
of charged groups on molecules, which differs from
ionic interactions like those of ionic compounds (e.g.,
NaCl)
Section 3.2: Noncovalent Bonding
Hydrogen Bonds
Electron-deficient hydrogen is
weakly attracted to unshared
electrons of another oxygen or
nitrogen
Large numbers of hydrogen
bonds lead to extended network
Figure 3.6 Tetrahedral
Aggregate of Water
Molecules
(3)반데르발스힘
-일시적인 정전기적 상호작용,
-영구적이거나 일시적으로 유도된 쌍극자사이에 일어남
-거리에 따라 인력 혹은 반발력, 반데르발스 반경에서 가장 큼
-3가지 형태
1. 쌍극자-쌍극자 상호작용: 수소결합이 이의 한 형태(그림3.7a)
2. 쌍극자-유도된 쌍극자 상호작용
-영구적인 쌍극자는 인접한 분자의 전자분포를 뒤틀리게하여 일시적인
쌍극자형성을 유도한다(그림3.7b)
3. 유도된 쌍극자-유도된 쌍극자(그림3.7c)
-인접된 무극성분자 내 전자이동은 인접분자 내에 일시적인 분자불균형을
초래한다.
-런던 분산력:DNA분자 내 위아래 염기고리의 상호작용
Section 3.2: Noncovalent Bonding
Van der Waals Forces
Occur between neutral,
permanent, and/or induced
dipoles
Three types:
Dipole-dipole interactions
Dipole-induced dipole
interactions
Induced dipole-induced
dipole interactions
Figure 3.7 Dipolar Interactions
3.3 물의 성질
-녹는점 끓는점이 높다(표3.2); 수소결합
-물 한 분자는 4개의 수소결합(그림3.8)
-물 온도를 증가시키는데 에너지가 높다(표3.3)
-물은 높은 기화열과 열용량
3.4 물의 용매성질
-이온, 당, 많은 아미노산 등을 녹인다
1)친수성
-용매화 구형(그림3.9)
구조화된 물 (그림3.10)
졸-겔(그림3.11): 아메바의 위족, G-actin F-actin의 가역적중합반응
2)소수성분자
-물의 용매화망상에서 배제되어 작은 방울로 뭉친다
-물이 무극성분자 주위에 새장모양(그림3.12)
-무극성물질사이의 인력: 소수성 상호작용
3) 양극성
-극성그룹과 무극성그룹을 포함
-예: 이온화 지방산(카르복실기와 탄화수소, 미셀형성 그림3.11)
Section 3.3: Thermal Properties of Water
Water’s melting and boiling points are
exceptionally high due to hydrogen bonding
Each water molecule can form four hydrogen bonds
with other water molecules
Extended network of hydrogen bonds
Section 3.3: Thermal Properties of Water
Figure 3.8 Hydrogen Bonding
Between Water Molecules in Ice
Maximum number of hydrogen bonds form when
water has frozen into ice
Open, less-dense structure
Section 3.3: Thermal Properties of Water
Water has an exceptionally high heat of fusion and
heat of vaporization
Helps to maintain an organism’s internal
temperature
Section 3.4: Solvent Properties of Water
Figure 3.9 Solvation
Spheres
Water is the ideal biological solvent
Hydrophilic Molecules, Cell Water Structuring, and
Sol-Gel Transitions
Water can dissolve ionic and polar substances
Shells of water molecules form around ions forming
solvation spheres
Section 3.4: Solvent Properties of Water
Figure 3.10 Diagrammatic
View of Structured Water
Structured Water
Water is rarely free
flowing
Water is associated
with macromolecules
and other cellular
components
Forms complex threedimensional bridges
between cellular
components
Section 3.4: Solvent Properties of Water
Figure 3.11 Amoeboid
Movement
Sol-Gel Transitions
Cytoplasm has properties of a gel (colloidal
mixture)
Transition from gel to sol important in cell
movement
Amoeboid motion provides an example of
regulated, cellular, sol-gel transitions
Section 3.4: Solvent Properties of Water
Figure 3.12 The
Hydrophobic Effect
Hydrophobic Molecules and the Hydrophobic Effect
Small amounts of nonpolar substances are excluded
from the solvation network forming droplets
This hydrophobic effect results from the solvent
properties of the water and is stabilized by van der
Waals interactions
Section 3.4: Solvent Properties of Water
Amphipathic Molecules
Contain both polar and
nonpolar groups
Amphipathic molecules
form micelles when mixed
with water
Important feature for
the formation of
cellular compartments
Figure 3.13 Formation of Micelles
(4)삼투압
-반투막에의 물의 통과현상 (그림3.14)
-삼투압은 용질농도에 의존(그림3.15)
-삼투압=iMRT (i=용질의 이온화정도, M=몰랄농도)
-예: 0.1M NaCl의 I 값? (82페이지)
-저장,등장, 고장액(그림3.16)
-막전위; 세포막표면상의 이온의 불균형으로 전기전도, 능동수송, 수동수송
-삼투압의 조절, 식물은 팽압
-리포트?(문제3.2 - 3.4)
Section 3.4: Solvent Properties of Water
Figure 3.14 Osmotic
Pressure
Osmotic Pressure
Osmosis is the spontaneous passage of solvent
molecules through a semipermeable membrane
Osmotic pressure is the pressure required to stop
the net flow of water across the membrane
Osmotic pressure depends on solute concentration
Section 3.4: Solvent Properties of Water
Can be measured with an osmometer
or calculated ( =iMRT)
Cells may gain or lose water because
of the environmental solute
concentration
Solute concentration differences
between the cell and the environment
can have important consequences
Isotonic solution
Hypotonic solution
Hypertonic solution
Figure 3.16 Effect of Solute Concentration on Animal Cells
Section 3.4: Solvent Properties of Water
Proteins with ionizable amino acid side chains affect
cellular osmolarity by attracting ions of opposite
charge
There is asymmetry of charge across the membrane
due to ions forming an electrical gradient (membrane
potential)
Unlike animal cells, plant cells use osmotic pressure
to drive growth via turgor pressure
3.5 물의 이온화
-물의 이온화
Keq, 평형상수
Keq x 55.5 은 이온적 Kw
pH=-log[H+]
(1)산, 염기 그리고 pH
-강산 강염기
-약산 약염기
약산과 이의 짝염기
Ka, 산의 해리상수(클수록 강산)
pKa= -logKa (pKa가 낮을수록 강산)(표 3.4)
- pH척도(그림3.17), 수소이온 농도의 음성로그: pH= -log[H+]
Section 3.5: Ionization of Water
Water can occasionally ionize, forming a hydrogen
ion (H+) and a hydroxide ion (OH-)
In an aqueous solution, a proton combines with a
water molecule to form H3O+ (hydronium ion)
H2O H+ + OH- (reversible)
Section 3.5: Ionization of Water
The ion product of water is referred to as Keq[H2O]
or Kw = [H+][OH-]
Kw at 25°C and 1 atm pressure is 1.0 10-14
Kw is temperature-dependent; therefore, pH is
temperature-dependent as well
Section 3.5: Ionization of Water
Acids, Bases, and pH
An acid is a proton donor
A base is a proton acceptor
Most organic molecules that donate or accept
protons are weak acids or weak bases
A deprotonated product of a dissociation reaction
is a conjugate base
Section 3.5: Ionization of Water
The pH scale can be used to
measure hydrogen ion
concentration
pH=-log[H+]
Figure 3.17 The pH Scale and the pH Values of
Common Fluids
Section 3.5: Ionization of Water
pKa is used to express the
strength of a weak acid
Lower pKa equals a stronger
acid
pKa=-logKa
Ka is the acid dissociation
constant
Figure 3.17 The pH Scale and the pH Values of
Common Fluids
Section 3.5: Ionization of Water
(2) 완충액
-산독증, 알칼리혈증
-완충액
-르샤트리에르의 원리: 평형상태에서 한 반응에 어떤 변화를 주면 그 변화를
제거하는 방향으로 평형이 일어난다.
-예: 아세트산과 아세트산염나트륨으로 구성된 아세트산염완충액(그림3.18)
•완충용량(buffer capacity)
-완충액성분의 농도에 비례
•Henderson-Hasselbalch방정식
-HA= H+ + A-pH=pKa + log[A-]/[HA]
-[A-]=[HA]이면, pH=pKa (그림3.18)
-가장 효과적인 완충액은 pKa값 위아래 1pH범위
-리포트?, 문제3.5-3.11
Section 3.5: Ionization of Water
Buffers
Regulation of pH is universal and essential for all
living things
Certain diseases can cause changes in pH that can
be disastrous
Acidosis and Alkalosis
Buffers help maintain a relatively constant
hydrogen ion concentration
Commonly composed of a weak acid and its
conjugate base
Section 3.5: Ionization of Water
Buffers Continued
Establishes an
equilibrium between
buffer’s components
Follows Le Chatelier’s
principle
Equilibrium shifts in
the direction that
relieves the stress
Figure 3.18 Titration of Acetic Acid
with NaOH
Section 3.5: Ionization of Water
Henderson-Hasselbalch Equation
Establishes the relationship between pH and pKa for
selecting a buffer
Buffers are most effective when they are composed of
equal parts weak acid and conjugate base
Best buffering occurs 1 pH unit above and below the
pKa
Henderson-Hasselbalch Equation
pH = pKa + log
[A-]
[HA]
Section 3.5: Ionization of Water
Worked Problem 3.5 (Page 91)
Calculate the pH of a mixture of 0.25 M acetic acid
(CH3COOH) and 0.1 M sodium acetate (NaC2H3O2)
The pKa of acetic acid is 4.76
Solution:
pH = pKa + log
pH = 4.76 + log
[acetate]
[acetic acid]
[0.1]
[0.25]
= 4.76 + 0.398 = 4.36
*한 개 이상의 이온화그룹을 갖는 약산
-인산(phosphoric acid, H3PO4), 약한 다양성자 산
-NaOH로 적정(그림3.19), 단계적 이온화
-가장 산성 그룹의 pKa를 pK1으로 표기
-낮은 pH에서 대부분 분자들이 양성자화된다
-pH와 pK1이 동일할 때 H3PO4와 H2PO4-의 양이 동일함
-아미노산의 이온화: 두 기능기, 적정시 –COOH가 먼저 양성자를 잃고 다음으로 –
NH3가 다음으로
Section 3.5: Ionization of Water
Figure 3.19 Titration of
Phosphoric Acid with
NaOH
Weak Acids with Multiple Ionizable Groups
Each ionizable group can have its own pKa
Protons are released in a stepwise fashion
(3)생리적인 완충액
•중탄산염완충액
CO2 + H2O ↔ H2CO3, Carbonic acid
H2CO3 ↔ H+ + HCO3-, Bicarbonate
CO2 + H2O ↔ H++ HCO3-, 실제 혈액내
•인산완충액
-H2PO4-(인산이수소)= H+ + HPO42+ (인산수소)
*단백질완충액
-곁사슬의 이온화기
-농도가 많음, 헤모글로빈 알부민 등
*세포의 부피조절과 물질대사 (그림3A)
삼투몰 농도의 작은 변화를 보정하는 기작: 막을 통한 무기이온의 교환
-단백질합성 시: 아미노산 감소로 물 유출, 무기이온의 이입
-단백질분해 시; 반대
-삼투질이라는 다량의 삼투활성물질의 합성: 스트레스를 받으면 다량의
알코올(소비톨 등), 아미노산, 타우린(아미노산유도체)를 만듦
Section 3.5: Ionization of Water
Physiological Buffers
Buffers adapted to solve specific physiological
problems within the body
Bicarbonate Buffer
One of the most important buffers in the blood
CO2 + H2O H+ + HCO3- (HCO3- is bicarbonate):
This is a reversible reaction
Carbonic anhydrase is the enzyme responsible
Section 3.5: Ionization of Water
Phosphate Buffer
Consists of H2PO4-/HPO42(weak acid/conjugate base)
H2PO4- H+ + HPO42Important buffer for
intracellular fluids
Protein Buffer
Proteins are a significant
source of buffering capacity
(e.g., hemoglobin)
Figure 3.20 Titration of
H2PO4- by Strong Base