Document 7857881

Download Report

Transcript Document 7857881

Chapter 2: Application Layer
Our goals:
 conceptual,
implementation
aspects of network
application protocols
 transport-layer
service models
 client-server
paradigm

peer-to-peer
paradigm
 learn about protocols
by examining popular
application-level
protocols




HTTP
FTP
SMTP / POP3 / IMAP
DNS
 programming network
applications

socket API
2: Application Layer
1
Applications and application-layer protocols
Application: communicating,
distributed processes



e.g., e-mail, Web, P2P file
sharing, instant messaging
running in end systems
(hosts)
exchange messages to
implement application
application
transport
network
data link
physical
Application-layer protocols



one “piece” of an app
define messages
exchanged by apps and
actions taken
use communication services
provided by lower layer
protocols (TCP, UDP)
application
transport
network
data link
physical
application
transport
network
data link
physical
2: Application Layer
2
Network applications: some jargon
Process: program running
within a host.
 within same host, two
processes communicate
using interprocess
communication (IPC).
 processes running in
different hosts
communicate with an
application-layer
protocol
user agent: software
process, interfacing with
user “above” and network
“below”.
 implements applicationlevel protocol



Web: browser
E-mail: mail reader
streaming audio/video:
media player
2: Application Layer
3
Client-server paradigm
Typical network app has two
pieces: client and server
Client:
application
transport
network
data link
physical
 initiates contact with server
(“speaks first”)
 typically requests service from
server,
 Web: client implemented in
browser; e-mail: in mail reader
Server:
 provides requested service to client
request
reply
application
transport
network
data link
physical
 e.g., Web server sends requested Web
page, mail server delivers e-mail
2: Application Layer
4
Processes communicating across network
API: Application
Programming Interface
 defines interface
between application and
transport layers
 socket: Internet API

two processes
communicate by sending
data into socket, reading
data out of socket
Q: how does a process
“identify” the other
process with which it
wants to communicate?


IP address of host
running other process
“port number” - allows
receiving host to
determine to which local
process the message
should be delivered
… lots more on this later.
2: Application Layer
5
What transport service does an app need?
Data loss
 some apps (e.g., audio) can
tolerate some loss
 other apps (e.g., file
transfer, telnet) require
100% reliable data
transfer
Timing
 some apps (e.g.,
Internet telephony,
interactive games)
require low delay to be
“effective”
Bandwidth
 some apps (e.g.,
multimedia) require
minimum amount of
bandwidth to be
“effective”
 other apps (“elastic
apps”) make use of
whatever bandwidth
they get
2: Application Layer
6
Transport service requirements of common apps
Data loss
Bandwidth
Time Sensitive
file transfer
e-mail
Web documents
real-time audio/video
no loss
no loss
no loss
loss-tolerant
no
no
no
yes, 100’s msec
stored audio/video
interactive games
instant messaging
loss-tolerant
loss-tolerant
no loss
elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic
Application
yes, few secs
yes, 100’s msec
yes and no
2: Application Layer
7
Internet transport protocols services
TCP service:
 connection-oriented: setup




required between client and
server processes
reliable transport between
sending and receiving process
flow control: sender won’t
overwhelm receiver
congestion control: throttle
sender when network
overloaded
does not providing: timing,
minimum bandwidth
guarantees
UDP service:
 connectionless: no
connection setup between
sending and receiving
process
 does not provide:
reliability, flow control,
congestion control, timing,
or bandwidth guarantee
Q: why bother? Why is
there a UDP?
2: Application Layer
8
Internet apps: application, transport protocols
Application
e-mail
remote terminal access
Web
file transfer
streaming multimedia
Internet telephony
Application
layer protocol
Underlying
transport protocol
SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Dialpad)
TCP
TCP
TCP
TCP
TCP or UDP
typically UDP
2: Application Layer
9
Web and HTTP
First some jargon
 Web page consists of objects
 Object can be HTML file, JPEG image, Java
applet, audio file,…
 Web page consists of base HTML-file which
includes several referenced objects
 Each object is addressable by a URL (universal
resource locator)
 Example URL:
www.someschool.edu/someDept/pic.gif
host name
path name
2: Application Layer
10
HTTP overview
HTTP: hypertext
transfer protocol
 Web’s application layer
protocol
 client/server model
 client: browser that
requests, receives,
“displays” Web objects
 server: Web server
sends objects in
response to requests
 HTTP 1.0: RFC 1945
 HTTP 1.1: RFC 2068
PC running
Explorer
Server
running
Apache Web
server
Mac running
Navigator
2: Application Layer
11
HTTP overview (continued)
Uses TCP:
 client initiates TCP
connection (creates socket)
to server, port 80
 server accepts TCP
connection from client
 HTTP messages (applicationlayer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)
 TCP connection closed
HTTP is “stateless”
 server maintains no
information about
past client requests
aside
Protocols that maintain
“state” are complex!
 past history (state) must
be maintained
 if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled
2: Application Layer
12
HTTP Example
(contains text,
Suppose user enters URL
references to 10
www.someSchool.edu/someDepartment/home.index
jpeg images)
1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80
2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket.
1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client
3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket
time
2: Application Layer
13
HTTP Example (cont.)
4. HTTP server closes TCP
5. HTTP client receives response
connection.
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects
time 6. Steps 1-5 repeated for each
of 10 jpeg objects
2: Application Layer
14
Non-persistent, persistent connections
Non-persistent
 HTTP/1.0: server parses
request, responds, closes
TCP connection
 2 RTTs to fetch object
 TCP connection
 object request/transfer
 each transfer suffers from
TCP’s initially slow sending
rate
 many browsers open multiple
parallel connections
Persistent
 default for HTTP/1.1
 on same TCP connection:
server, parses request,
responds, parses new
request, ...
 client sends requests for
all referenced objects as
soon as it receives base
HTML.
 fewer RTTs, less slow
start.
2: Application Layer
15
Response time modeling
Definition of RRT: time to
send a small packet to
travel from client to
server and back.
Response time:
 one RTT to initiate TCP
connection
 one RTT for HTTP
request and first few
bytes of HTTP response
to return
 file transmission time
total = 2RTT+transmit time
initiate TCP
connection
RTT
request
file
time to
transmit
file
RTT
file
received
time
time
2: Application Layer
16
HTTP request message
 two types of HTTP messages: request, response
 HTTP request message:
 ASCII (human-readable format)
request line
(GET, POST,
HEAD commands)
GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
header Connection: close
lines Accept-language:fr
Carriage return,
line feed
indicates end
of message
(extra carriage return, line feed)
2: Application Layer
17
HTTP request message: general format
2: Application Layer
18
HTTP response message
status line
(protocol
status code
status phrase)
header
lines
data, e.g.,
requested
HTML file
HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html
data data data data data ...
2: Application Layer
19
HTTP response status codes
In first line in server->client response message.
A few sample codes:
200 OK

request succeeded, requested object later in this message
301 Moved Permanently

requested object moved, new location specified later in
this message (Location:)
400 Bad Request

request message not understood by server
404 Not Found

requested document not found on this server
505 HTTP Version Not Supported
2: Application Layer
20
Trying out HTTP (client side) for yourself
1. Telnet to your favorite Web server:
telnet www.eurecom.fr 80 Opens TCP connection to port 80
(default HTTP server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr
2. Type in a GET HTTP request:
GET /~ross/index.html HTTP/1.0
By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server
3. Look at response message sent by HTTP server!
2: Application Layer
21
User-server interaction: authorization
Authorization : control access to
server
client
server content
usual http request msg
 authorization credentials:
typically name, password
401: authorization req.
WWW authenticate:
 stateless: client must present
authorization in each request
 authorization: header line in
usual http request msg
+ Authorization: <cred>
each request
 if no authorization: header,
usual http response msg
server refuses access,
sends
WWW authenticate:
header line in response
usual http request msg
+ Authorization: <cred>
usual http response msg
time
2: Application Layer
22
Cookies: keeping “state”
 server-generated # ,
server-remembered #,
client-stored #,
 server sends “cookie” to
client in response msg
Set-cookie: 1678453
 client presents cookie in
later requests
cookie: 1678453
client
server
usual http request msg
usual http response +
Set-cookie: #
usual http request msg
cookie: #
usual http response msg
cookiespectific
action
2 weeks later
usual http request msg
cookie: #
usual http response msg
cookiespectific
action
time
2: Application Layer
23
Cookies (continued)
What cookies can bring:
 authorization
 user preferences
 shopping carts
 recommendations
 user session state
(Web e-mail)
aside
Cookies and privacy:
 cookies permit sites to
learn a lot about you
 you may supply name
and e-mail to sites
 search engines use
redirection & cookies
to learn yet more
 advertising companies
obtain info across
sites
2: Application Layer
24
Conditional GET: client-side caching
 Goal: don’t send object if
client has up-to-date cached
version
 client: specify date of
cached copy in HTTP request
If-modified-since:
<date>
 server: response contains no
object if cached copy is upto-date:
HTTP/1.0 304 Not
Modified
server
client
HTTP request msg
If-modified-since:
<date>
HTTP response
object
not
modified
HTTP/1.0
304 Not Modified
HTTP request msg
If-modified-since:
<date>
HTTP response
object
modified
HTTP/1.0 200 OK
<data>
2: Application Layer
25