EHPV Technology Electro-Hydraulic Valves Auto-Calibration and Control Applied to GOALS
Download ReportTranscript EHPV Technology Electro-Hydraulic Valves Auto-Calibration and Control Applied to GOALS
EHPV Technology Auto-Calibration and Control Applied to Electro-Hydraulic Valves by Patrick Opdenbosch PUMP PRESSURE CONTROL PSdes PS PR atm 2 1 i_COIL PID Response: Manual Setting at 1000psi & KI = 30 KP = 350 sw2 DISCRETE PID uk 1 1 1 ek isol isol_m isol 1 5 12 isolm EHPV CONTROL 10 Pdes 4 1 Setup PR Target Scope Id: 4 1 MEASUREMENTS PR err 6 PSdes PS PR atm 3 2 1 1300 Controller Implementation (SIMULINK/XPC-Target) 0 1000 SE T 800 PR E SS UR E 400 [P SI 500 600 700 900 800 0 1400 1500 1200 1300 1000 1100 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Time [sec] Kv [LPH/sqrt(MPa)] NU AL Closed-loop Tracking Response COIL CURRENT [mA] ] Steady State Data used for Feedforward Compensation 100 90 80 10 9 8 70 60 7 6 50 40 30 5 4 3 Kv Kvd Vsol 20 10 0 FIXED INCOVA CONTROL 0 0.5 1 1.5 2 2.5 Time [sec] 3 100 Pressure [MPa] -50 1000 800 800 600 400 200 0 5 3.5 4 10 0 0 2 0.5 2 4 6 Time [sec] 8 Temperature [C] 350 1000 800 800 0.9 80 60 340 0.6 40 25 Position [mm] 320 8 0 0.5 1 1.5 2 2.5 Time [sec] 310 0.375 0.94 0.25 0.92 0.125 0.9 0 0.5 1 1.5 2 2.5 Time [sec] 3 3.5 4 0 5 4.5 800 ADAPTIVE Retract Control: Pump Margin Pressure Control 10 Desired Actual 9 8 7 20 0 3 300 10 0.5 Q 0.96 3.5 4 0 5 4.5 -20 -40 0.5 1 1.5 2 2.5 Time [sec] 3 3.5 4 4.5 -100 5 PSET PS PA PB PR ATM 4 0.5 1 1.5 2 2.5 Time [sec] 3 3.5 4 4.5 0 5 220 100 200 80 200 0 1 0 0.5 1 1.5 2 2.5 Time [sec] 3 3.5 4 4.5 System Pressures 2 3 Time [sec] 4 5 400 200 0 1 2 3 Time [sec] 4 5 0 1 2 3 Time [sec] 4 5 200 100 50 0 -50 600 0 5 150 1 0 400 5 2 -80 800 600 0 3 -60 0 6 0 1 2 3 Time [sec] 4 5 150 100 50 0 -50 Input Currents to EHPV Solenoids Valve motion Desired Actual 4 6 Time [sec] 5 J Learning on 4 EHPV for piston motion control 2 4.5 0.98 0.3 330 200 1000 1.2 100 30 20 4 0.625 Piston’s Position Closed Loop Response Piston’s Velocity Closed Loop Response 0 3.5 0.75 ADAPTIVE Retract Control: Pump Margin Pressure Control 35 360 400 0 3 1.5 ADAPTIVE Retract Control: Pump Margin Pressure Control 40 370 600 10 2.5 Time [sec] Single EHPV Trajectory Error Parameter Estimation dP 60 1 -250 0 0 1 2 3 4 5 Time [sec] 6 7 8 9 10 0 1 2 3 4 5 Time [sec] 6 7 8 9 400 200 0 10 0 2 4 6 Time [sec] 8 600 400 200 0 10 Velocity [mm/s] -200 600 Position [mm] A- Input Current [mA] 2 -150 160 140 120 Piston Speed Response 0 2 4 6 Time [sec] 8 10 0 Low Pressure -20 -40 Input Solenoid Currents to EHPV’s System Pressures Response 20 100 80 -60 60 40 High Pressure -80 0 0.5 1 1.5 2 2.5 Time [sec] 3 3.5 4 4.5 -100 5 0 0.5 1 1.5 2 2.5 Time [sec] 3 3.5 4 4.5 Piston motion 5 Piston’s Position Closed Loop Response Piston’s Velocity Closed Loop Response FLOW CONDUCTANCE OBSERVER æ¶ r + AAx )çç çè¶ P ö é æ¶ r dPA ÷ & ç ê & ÷ = r K P P Q A x T v + A x ( A0 ( A S A l A ) A )ç ÷ ê ÷ è¶ T A øT dt ë HYDRAULIC TESTBED ù ö ÷ ú ÷ ÷ øP ú û Wheatstone Bridge Arrangement Electronics Wheatstone Bridge Assembly (EHPV) PS Supply Piston Dynamics &= u + d x& EHPV Wheatstone Bridge Arrangement for Motion Control FL Workport Pressure Dynamics 1 m u @ m1 (PAAA - PBAB - fˆf ) FL d @- 1 m fˆf = l 1 + l 3PA - l 4PB Df PB AB x Pump QBKvB- M KvA+ PB A Ax&= K A PS - PA @ K A h &= AA (u + d) = K&A h + K A h& AAx& KA AA PA PA KvP KvB+ PS QB KvT 1000 ˆ T F&(x )h + W ˆ T F (x )h&= A uˆ W A KvAPR 1500 OBSERVER: Return QA+ ff Ql Resulting System QB+ QA- 10 QA QL 500 5 FL=0 1000 -120 -105 -90 -75 -60 -45 -30 -15 800 0 15 30 45 60 75 90 105 120 -500 600 -1000 PA 0 135 Estimation Error [N] -135 Force [kN] -150 PB Tank 0 Actual Estimated Flow Conductance [LPH/sqrtMPa] 1.5 40 3 (v A0 1 1 0 5 4.5 Temp 45 180 4 -100 PROJECT TASKS 1000 B- Input Current [mA] Velocity [mm/s] 6 1200 B+ Input Current [mA] 7 A+ Input Current [mA] PUMP PRESSURE MARGIN CONTROL PSET PS PA PB PR ATM 8 0 20 Learning on 2 EHPV for piston motion control 270 9 Desired Actual 50 30 1.8 280 150 40 Single EHPV Flow Conductance Closed Loop Response 290 200 50 1.02 2 1 50 Single EHPV for pump control + 4 EHPV for piston motion control Pressure Feedback to INCOVA logic Open loop valve opening control No adaptation (fixed lookup tables) of inverse I/O valve mapping Same inverse I/O mapping for all 4 EHPV in Wheatstone Bridge Arrangement 250 Jacobian Controllability Estimation Kvd Kv Kvappx 60 Learning on single EHPV on pressure control mode 2 MA Adaptive Proportional Feedback LEARNING INCOVA CONTROL 4 0 1500 PLANT 70 Pressure [MPa] ABSTRACT Target Scope Id: 3 1 8 J[] sw1 Input Voltage [V] 0 Pdes Target Scope Id: 2 FFWD Pressure Diff [MPa] 3 Target Scope Id: 1 Velocity [mm/s] PSD[MPa] Flow Conductance [LPM/sqrt(MPa)] FEEDFORWARD COMPENSATION CAN-AC2-PCI B1 CAN 1 / CAN 2 Standard / Extended Experimental merging of flow conductance estimator and learning control Incorporate fault diagnostics capabilities along with online I/O mapping learning 4 6 PS FUTURE WORK 3.5 Time [sec] Closed-loop Step Response PS Development of hydraulic testbed employing the EHPV Wheatstone bridge arrangement Design and test EHPV Pump pressure control scheme Design and test INCOVA control scheme without online learning of the valves’ input/output (I/O) mapping Design and test INCOVA control scheme with online learning of the valves’ input/output mapping Design and test flow conductance observer Conduct performance evaluation 3 NLPN Q [LPM/V-sqrt(MPa)] 2.5 KV B- Nominal Input Current [mA] 3 isol B- NLPN Input Current [mA] 4 Inverse Mapping Correction A- Nominal Input Current [mA] Pressure [MPa] 5 PRESSURE CONTROL EHPV (SINGLE CARTRIDGE) SENSORS Motion control of hydraulic pistons can be accomplished with independent metering using Electro-Hydraulic Poppet Valves. Currently, the valve opening is achieved by changing the valve’s conductance coefficient Kv (output) in an open loop manner via PWM current (input), computed from an inverse input-output map obtained through offline calibration. Without any online correction, the map cannot be adjusted to accurately reflect the behavior of the valve as it undergoes continuous operation. The intention is to develop a control methodology to have the valve learn its own inverse mapping at the same time that it’s performance is improved. The control input is composed of: Feedback compensation via online identification of trajectory error parameters Feedforward compensation via nominal inverse mapping Feedforward correction via learned adjustment to inverse nominal mapping 6 0 PS_DES Nominal inverse mapping A- NLPN Input Current [mA] Single EHPV Feedback compensation via discrete PI controller with anti-windup Feedforward compensation via inverse experimental steady state response Patrick Opdenbosch November 9, 2005 ver 1.0 Sampling: 10 msec LEARNING CONTROL PID Response: Manual Setting at 1000psi & KI = 30 KP = 350 V 7 Pressure [MPa] Development of a general formulation for control of nonlinear systems with parametric uncertainty, time-varying characteristics, and input saturation Improve the performance of electro-hydraulic valves via online auto-calibration and feedback control Study of online learning dynamics along with fault diagnostics SUPPLY PRESSURE [MPa] GOALS dK m Valves for Pump Control -5 x -10 400 Needle Valve -1500 -15 -2000 -20 -2500 -25 -135 x VB0 AB AA VA0 Hydraulic Piston HYDRAULIC CIRCUIT 200 Speed Command Knob 0 -200 Piston Speed [mm/s] 0 10 20 30 40 Time [sec] 50 60 70 Hydraulic Piston -110 -85 -60 -35 Simulation Results: Estimated KA vs Actual KA RUN 02 RUN 04 RUN 06 15 40 65 90 RUN 07 Experimental Piston’s Friction Force RUN 01 RUN 02 RUN 04 RUN 06 Position/Velocity Sensor RUN 07 Friction Force Model Error Df Sponsors: HUSCO International and FPMC Center Email: [email protected] Bypass Hose 115 Piston Speed [mm/s] 80 RUN 01 -10 website: http://www.imdl.gatech.edu/opdenbosch Spring 2006 HYDRAULIC COMPONENTS Collaborators: •James D. Huggins Advisors: •Dr. Nader Sadegh, Dr. Wayne Book