Auto-Calibration and Control Applied to Electro-Hydraulic Valves PATRICK OPDENBOSCH By

Download Report

Transcript Auto-Calibration and Control Applied to Electro-Hydraulic Valves PATRICK OPDENBOSCH By

Auto-Calibration and Control Applied to
Electro-Hydraulic Valves
By
PATRICK OPDENBOSCH
Graduate Research Assistant
Manufacturing Research Center Room 259
(404) 894 3256
[email protected]
April 11, 2006
Sponsored by: HUSCO International and the Fluid Power Motion Control Center
MOTIVATION
 MOTION CONTROL




Electronic approach
Use of solenoid Valves
Energy efficient operation
New electrohydraulic
valves
 Conventional hydraulic
spool valves are being
replaced by assemblies of
4 independent valves for
metering control
High
Pressure
Low
Pressure
Spool Valve
Spool piece
Spool motion
Piston
April 11, 2006
Piston motion
2
MOTIVATION
 MOTION CONTROL




Electronic approach
Use of solenoid Valves
Energy efficient operation
New electrohydraulic
valves
 Conventional hydraulic
spool valves are being
replaced by assemblies of
4 independent valves for
metering control
Low
Valve motion
Pressure
High
Pressure
April 11, 2006
Piston motion
3
MOTIVATION









Poppet type valve
Pilot driven
Solenoid activated
Internal pressure
compensation
Virtually ‘zero’ leakage
Bidirectional
Low hysteresis
Low gain initial metering
PWM current input
April 11, 2006
Coil Cap
Modulating
Spring
Input Current
Coil
Armature
Control
Chamber
Pressure
Compensating
Spring
U.S. Patents (6,328,275) & (6,745,992)
 Electro-Hydraulic Poppet
Valve (EHPV)
Adjustment
Screw
Pilot Pin
Armature
Bias Spring
Main Poppet
Forward
(Side) Flow
Reverse
(Nose) Flow
4
MOTIVATION
 VALVE CHARACTERIZATION
Flow Conductance Kv
Kv
Q Q  K P1  P2   K P
2
V
2
V
P1
P2
or
Q  K V P1  P2 sgn P1  P2 
Q
FULLY TURBULENT CHARACTERIZATION
April 11, 2006
5
MOTIVATION
EHPV Forward Flow Conductance Coefficient Measurement
100
1.5044
1.3565
1.2074
1.0584
1.4308
1.2818
1.1326
0.98395
90
 FORWARD MAPPING
80
Kv [LPM/sqrt(MPa)]
70
60
50
40
30
20
10
Side to nose
0
0
0.2
0.4
0.6
0.8
1
Pressure Differential [MPa]
1.2
1.4
1.6
1.8
Forward Kv at different input currents [A]
 REVERSE MAPPING
EHPV Reverse Flow Conductance Coefficient Measurement
120
1.507
1.3587
1.2091
1.0594
1.4333
1.2838
1.134
0.9845
100
Kv [LPM/sqrt(MPa)]
80
60
40
20
Nose to side
0
0
0.2
0.4
0.6
0.8
Pressure Differential [MPa]
1
1.2
1.4
Reverse Kv at different input currents [A]
April 11, 2006
6
VELOCITY COMMAND TABLE
1.00
0.80
0.60
Velocity [kph]
MOTIVATION
0.40
0.20
0.00
-0.20
-0.40
-0.60
-0.80
-1.00
0
1
2
3
4
5
Applied Voltage [V]
Obtain (Operator) desired speed, n
HUSCO’S CONTROL TOPOLOGY
Calculate desired flow, nAB  Q
US PATENT # 6,732,512 & 6,718,759
Read port pressures, Ps PR PA PB
Calculate equivalent KvEQ
Determine Individual Kv
KvB
Hierarchical control: System controller, pressure controller,
function controller
April 11, 2006
KvA
Determine input current to
EHPV isol=f(Kv,P,T)
7
MOTIVATION
Constant Temperature (T = 30 C)
P
120
T
Kv [(LPM)/sqrt(MPa)]
100
80
60
EXPERIMENTAL DATA
40
20
Kv
0
1.5
5
1
4
3
0.5
2
1
isol
0
Input [A]
0
dP [MPa]
T = 20 C
Kv
1.4
1.2
Input [A]
1
0.8
T INTERPOLATED AND INVERTED DATA isol
0.6
0.4
0.2
0
5
4
100
3
P
April 11, 2006
80
60
2
40
1
dP [MPa]
20
0
0
Kv [(LPM)/sqrt(MPa)]
8
MOTIVATION
Flow conductance online
estimation

100
80
60
40
20
Online inverse flow
conductance mapping
learning and control
 Effects by input saturation and timevarying dynamics
 Maintain tracking error dynamics stable
while learning

120
Kv [(LPM)/sqrt(MPa)]
 Accuracy
 Computation effort
Constant Temperature (T = 30 C)
0
1.5
5
1
4
3
0.5
2
1
0
Input [A]
0
dP [MPa]
T = 20 C
1.4
1.2
1
Input [A]

0.8
0.6
0.4
0.2
0
5
4
Fault diagnostics
100
3
80
60
2
40
1
dP [MPa]
20
0
0
Kv [(LPM)/sqrt(MPa)]
 How can the learned mappings be used
for fault detection
April 11, 2006
9
PRESENTATION OUTLINE

FLOW CONDUCTANCE ESTIMATION
 Reported work
 Approaches

ONLINE FLOW CONDUCTANCE
MAPPING LEARNING AND CONTROL
 Fixed inverse mapping
 Learning mapping response


April 11, 2006
FUTURE WORK
CONCLUSION
10
FLOW CONDUCTANCE ESTIMATION
 REPORTED WORK
 O'hara, D.E., (1990), Smart valve, in Proc: Winter Annual Meeting of the
American Society of Mechanical Engineers pp. 95-99
 Book, R., (1998), "Programmable electrohydraulic valve", Ph.D. dissertation,
Agricultural Engineering, University of Illinois at Urbana-Champaign
 Garimella, P. and Yao, B., (2002), Nonlinear adaptive robust observer for
velocity estimation of hydraulic cylinders using pressure measurement only, in
Proc: ASME International Mechanical Engineering Congress and Exposition
pp. 907-916
 Liu, S. and Yao, B., (2005), Automated modeling of cartridge valve flow
mapping, in Proc: IEEE/ASME International Conference on Advanced
Intelligent Mechatronics pp. 789-794
 Liu, S. and Yao, B., (2005), On-board system identification of systems with
unknown input nonlinearity and system parameters, in Proc: ASME
International Mechanical Engineering Congress and Exposition
 Liu, S. and Yao, B., (2005), Sliding mode flow rate observer design, in Proc:
Sixth International Conference on Fluid Power Transmission and Control pp.
69-73
April 11, 2006
11
FLOW CONDUCTANCE ESTIMATION
 O'hara (1990), Book
(1998)
 Concept of “Inferred Flow
Feedback”
 Requires a priori
knowledge of the flow
characteristics of the valve
via offline calibration
Squematic Diagram for Programmable Valve
April 11, 2006
12
FLOW CONDUCTANCE ESTIMATION
 Garimella and Yao (2002)
 Velocity observer based on
cylinder cap and rod side
pressures
 Adaptive robust techniques
 Parametric uncertainty for
bulk modulus, load mass,
friction, and load force
 Nonlinear model based
 Discontinuous projection
mapping
 Adaptation is used when
PE conditions are satisfied
April 11, 2006
13
FLOW CONDUCTANCE ESTIMATION
 Liu and Yao (2005)
 Flow rate observer based
on pressure dynamics via
sliding mode technique.
 Needs piston’s position,
velocity, rode side
pressure, and cap side
pressure feedback
 Affected by parametric
uncertainty in the
knowledge of effective bulk
modulus
April 11, 2006
14
FLOW CONDUCTANCE ESTIMATION
 Liu and Yao (2005)
 Modeling of valve’s flow
mapping
 Online approach without
removal from overall
system
 Combination of model
based approach,
identification, and NN
approximation
 Comparison among
automated modeling,
offline calibration, and
manufacturer’s calibration
April 11, 2006
15
FLOW CONDUCTANCE ESTIMATION
PS
 APPROACHES




Model based
Physical sensor
INCOVA based
Learning based
Pump
QB-
QA+
KvB-
M
KvA+
PB
PA
KvP
KvB+
KvAPR
QB
KvT
QB+
QA-
QA
QL
FL=0
PB
Tank
PA
m
x
x
VB0
AB
AA
VA0
Hydraulic Piston
EHPV - Wheatstone Bridge used
for motion control of hydraulic
pistons
April 11, 2006
16
FLOW CONDUCTANCE ESTIMATION
PS
 MODEL BASED




Object oriented
Offline identification
Online identification
Customization
Pump
QB-
QA+
KvB-
M
KvA+
PB
PA
KvP
KvB+
KvAPR
QB
KvT
QB+
QA-
QA
QL
FL=0
PB
Tank
PA
m
x
x
VB0
AB
AA
VA0
Hydraulic Piston
EHPV - Wheatstone Bridge used
for motion control of hydraulic
pistons
April 11, 2006
17
FLOW CONDUCTANCE ESTIMATION
PS
 PHYSICAL SENSOR







Pump
Position sensor
Position/velocity sensor
Venturi type flow meter
Efficiency compromise
Sensor safety compromise
Design compromise
Cost
QB-
QA+
KvB-
M
KvA+
PB
PA
KvP
KvB+
KvAPR
QB
KvT
QB+
QA-
QA
QL
FL=0
PB
Tank
PA
m
x
x
VB0
AB
AA
VA0
Hydraulic Piston
EHPV - Wheatstone Bridge used
for motion control of hydraulic
pistons
April 11, 2006
18
FLOW CONDUCTANCE ESTIMATION
n
 INCOVA BASED
 Relies on expected
pressures for given
commanded speed
PR
KvB
QB
R @ AA AB
PB
AB
QA
PA
KvA
PS
 Power Extension Mode (PEM)
AA
Actual System
x&cmd AB
= K vEQ
PEQ
K vA = mK vB
PEQ  RPs  PA   PB  PR 
K vEQ 
PEQ
K vA K vB
K va  R 3 K vB
2
2
Equivalent System
April 11, 2006
19
FLOW CONDUCTANCE ESTIMATION
n
 INCOVA BASED
 Relies on expected
pressures for given
commanded speed
PR
KvB
QB
R @ AA AB
PB
AB
QA
PA
 Power Extension Mode (PEM)
PS
AA
KvA
Actual System
x&cmdAA = K vA
PS - PˆA
x&cmdAB = K vB PˆB - PR
PEQ
KEQ
Equivalent System
April 11, 2006
20
FLOW CONDUCTANCE ESTIMATION
n
 INCOVA BASED
 Relies on expected
pressures for given
commanded speed
PR
KvB
QB
R @ AA AB
PB
AB
QA
PA
 Power Extension Mode (PEM)
æ
(x&cmd + e )AA = ççç1 +
çè
æ
(x&cmd + e )AB = ççç1 +
çè
P = Pˆ + D x&=
i
i
April 11, 2006
i
dA ö
2
÷
÷
&
x
A
- D AK V2A
(
)
÷
cmd A
÷
÷
K VA ø
dB ö
2
÷
÷
&
x
A
+ D BK V2 B
(
)
÷
cmd B
÷
÷
K VB ø
x&cmd + e K Vi = K Vi + di
PS
AA
KvA
Actual System
PEQ
KEQ
Equivalent System
21
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
PS
 Assumptions:
Pump
 bulk modulus is
sufficiently high
M
 Variable volume is
sufficiently small.
 Negligible temperature
change
 Negligible leakage
QB-
QA+
KvB-
KvA+
PB
PA
KvP
KvB+
KvAPR
QB
KvT
QB+
QA-
QA
QL
FL=0
PB
Tank
PA
m
 Chamber pressure equation
dP
1æ
¶P ö
÷
ç
= ç ÷
÷
dt
v çè ¶ r ÷
øT
é
æ¶ r
êr (Qi - Qo - v&) - T&
v çç
êë
è¶ T
æ¶ r ö dP
v çç ÷
» 0 = éër (Qi - v&)ù
÷
û
÷
è¶ P øT dt
April 11, 2006
x
x
VB0
AB
AA
VA0
Hydraulic Piston
ö ù
÷
ú
÷
÷
øP ú
û EHPV - Wheatstone Bridge used
for motion control of hydraulic
pistons
22
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
æ¶ r ö dP
v çç ÷
» 0 = éër (Qi - v&)ù
÷
û
÷
è¶ P øT dt
Q A = A Ax&
 Let
K = K (x ) @ K VA (isol )
h @ PS - PA
 Then
K h = A A x&
 Differentiation yields
&= AA (u + d)
K&h + K h&= AAx&
April 11, 2006
23
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
&= AA (u + d)
K&h + K h&= AAx&
&= PAAA - PBAB - FL - f f - mg sin q
mx&
 Let
 Then
FL = 0 q = 0
&= PAAA - PBAB - fˆf - D f
mx&
f f = fˆf + D f
 Let
&=
x&
(P A - P A - fˆ ) - D
u @ (P A - P A - fˆ )
1
m
A
1
m
A
B
A
B
A
d @-
B
1
m
1
m
f
B
f
f
Df
 How good is this approximation?
April 11, 2006
24
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
&= AA (u + d)
K&h + K h&= AAx&
 Assume that the “sup” norm of K is bounded, and that K is
continuous on the compact set A:
K (x ) : A Ì ¡
K
 Then :
A
+
® BÌ ¡
+
@ sup K (x ) < ¥
xÎ A
20
800
15
700
10
600
K&(x ) - W T F&(x ) < eK ,2
5
0
-5
500
400
300
-10
200
-15
100
-20
400
April 11, 2006
Flow Conductance Kv [LPH/sqrtMPa]
K (x ) - W T F (x ) < eK ,1
Flow Conductance Error Actual-NLPN [LPH/sqrtMPa]
Actual
NLPN
450
500
550
600
650
700
Input Solenoid Current [mA]
750
800
850
900
0
400
450
500
550
600
650
700
Input Solenoid Current [mA]
750
800
25
850
900
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 Actual system
&= AA (u + d)
K&h + K h&= AAx&
 Let the observer be
ˆ T F&(x )h + W
ˆ T F (x )h&= A uˆ
W
A
 Let the error be
e @ A A (uˆ - u )
 Then
(W
T
April 11, 2006
ˆ T )(F&(x )h + F (x )h&) = e + A d + O (e , e )
- W
A
K ,1 K ,2
26
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 SIMULATIONS
PS
PS
Eta
PA
PA
eta
uest
Eta-CONVERTER
acc
u
isol
isol
u [mm/s]
KA
Vcmd
KA [LPH/sqrtMPa]
Vcmd
KA-OBSERVER
KA
HYDRAULIC MODEL
April 11, 2006
27
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 SIMULATIONS plots (d = 0)
1000
1.8
Actual
Estimated
1.6
800
600
1.2
Eta [sqrtMPa]
Flow Conductance [LPH/sqrtMPa]
1.4
400
200
1
0.8
0.6
0.4
0
0.2
-200
0
10
20
30
40
Time [sec]
50
60
70
0
80
60
0
10
20
30
40
Time [sec]
50
60
70
80
0
10
20
30
40
Time [sec]
50
60
70
80
60
40
40
20
20
Commanded Speed [mm/s]
Piston Acceleration [mm/s/s]
Actual
Estimated
0
-20
-40
-60
0
-20
-40
0
April 11, 2006
10
20
30
Time [sec]
40
50
-60
28
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 Experimental data (offline)
1.4
1200
1.2
1000
1
800
Flow Conductance [LPH/sqrtMPa]
Eta [sqrtMPa]
Actual
Estimated
0.8
0.6
0.4
0.2
0
600
400
200
0
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
-200
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
Note: Signals low-pass filtered at 5Hz
April 11, 2006
30
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 How small is d?
&= AA (u + d)
K&h + K h&= AAx&
 The error is
(W
T
ˆ T )(F&(x )h + F (x )h&) = e + A d + O (e , e )
- W
A
K ,1 K ,2
e @ A A (uˆ - u )
 d depends on how well we know the friction model
April 11, 2006
31
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 Actual Data
&
f f = PAAA - PBAB - mx&
April 11, 2006
32
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 Friction model*
fˆf = l 1 exp (l 2x&) + l 3PA - l 4PB + l 5x&
Error from Velocity Independent Model
1.5
1200
1000
800
600
400
200
0
-200
-400
-600
-800
Friction Force Error [N]
Friction Force [N]
FRICTION FORCE VELOCITY INDEPENDENT
MODEL
1.0
0.5
0.0
-0.5
-1.0
-1.5
-60
-40
-20
0
20
Piston Velocity [mm/sec]
ff
*
40
60
-60
-40
-20
0
20
40
60
Piston Velocity [mm/sec]
ffMOD
Bonchis, A., Corke, P.I., and Rye, D.C., (1999), A pressure-based, velocity independent, friction model for
asymmetric hydraulic cylinders, in Proc: IEEE International Conference on Robotics and Automation pp. 17461751
April 11, 2006
33
FLOW CONDUCTANCE ESTIMATION
 LEARNING BASED
 Friction model*
fˆf = l 1 exp (l 2x&) + l 3PA - l 4PB + l 5x&
Experimental Data
1500
Friction Force [N]
1000
500
0
-500
-1000
-1500
-2000
-2500
-150
-100
-50
0
50
100
150
Piston Velocity [mm/sec]
*
Bonchis, A., Corke, P.I., and Rye, D.C., (1999), A pressure-based, velocity independent, friction model for
asymmetric hydraulic cylinders, in Proc: IEEE International Conference on Robotics and Automation pp. 17461751
April 11, 2006
34
PRESENTATION OUTLINE

FLOW CONDUCTANCE ESTIMATION
 Reported work
 Approaches

ONLINE FLOW CONDUCTANCE
MAPPING LEARNING AND CONTROL
 Fixed inverse mapping
 Learning mapping response


April 11, 2006
FUTURE WORK
CONCLUSION
35
MAPPING LEARNING & CONTROL
PS
 PUMP CONTROL
Pump
 Single EHPV
 Feedback compensation
(discrete PI controller)
 Feedforward compensation
(lookup table)
QB-
QA+
KvB-
M
KvA+
PB
PA
KvP
KvB+
KvAPR
QB
KvT
QB+
QA-
QA
QL
FL=0
PB
Tank
PA
m
x
x
VB0
AB
AA
VA0
Hydraulic Piston
EHPV - Wheatstone Bridge used
for motion control of hydraulic
pistons
EHPV for pump control
April 11, 2006
36
MAPPING LEARNING & CONTROL
 PUMP CONTROL
 Single EHPV
 Feedback compensation
 Feedforward compensation
PRESSURE CONTROL EHPV
(SINGLE CARTRIDGE)
Patrick Opdenbosch
November 9, 2005
ver 1.0
Sampling: 10 msec
PSD[MPa]
3
PS_DES
FEEDFORWARD
COMPENSATION
sw2
DISCRETE PID uk
SENSORS
ek
1
isol
isol_m
isol
Target Scope
Id: 1
Target Scope
Id: 2
FFWD
1
1
Pdes
i_COIL
1
isolm
EHPV CONTROL
0
Pdes
sw1
PS
CAN-AC2-PCI B1
CAN 1 / CAN 2
Standard / Extended
Setup
Target Scope
Id: 3
1
PS
1
PR
1
Target Scope
Id: 4
MEASUREMENTS PR
err
Pump pressure control scheme
April 11, 2006
37
MAPPING LEARNING & CONTROL
 PUMP CONTROL
12
1500psi
1450psi
1300psi
1000psi
800psi
400psi
1400
1300
1200
Coil Current [mA]
 Single EHPV
 Feedback compensation
 Feedforward compensation
1500
1100
1000
900
SUPPLY PRESSURE [MPa]
10
800
8
6
700
4
600
2
500
1
2
3
4
0
1500
5
6
7
Desired Supply Pressure [MPa]
8
9
10
11
1300
MA
NU
AL
1000
SE
T
800
PR
E
SS
UR
E
400
[P
SI
]
500
600
700
800
900
1400 1500
1200 1300
1000 1100
Feedforward mapping
COIL CURRENT [mA]
Measured mapping
Pump pressure control scheme
April 11, 2006
38
MAPPING LEARNING & CONTROL
 PUMP CONTROL
PID Response: Manual Setting at 1000psi & KI = 30 KP = 350
7
5
Pressure [MPa]
 Single EHPV
 Feedback compensation
 Feedforward compensation
6
4
PSdes
PS
PR
atm
3
2
PID Response: Manual Setting at 1000psi & KI = 30 KP = 350
6
1
2.5
5
3
3.5
4
Time [sec]
Closed loop step response
Pressure [MPa]
4
PSdes
PS
PR
atm
3
2
1
0
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
Time [sec]
Closed loop tracking response
April 11, 2006
39
MAPPING LEARNING & CONTROL
 FIXED TABLE CONTROL
Desired
Actual
50
Velocity [mm/s]
 Pump control + INCOVA control
 No adaptation of inverse Kv
mapping
 Same inverse Kv mapping for all
valves
100
0
-50
-100
-150
400
200
0
2
4
6
Time [sec]
8
0
2
4
6
Time [sec]
8
10
6
7
8
9
10
7
8
9
10
6
800
0
5
Time [sec]
200
800
200
4
7
1000
400
3
400
1000
600
2
600
0
10
1
8
5
0
2
4
6
Time [sec]
8
10
Pressure [MPa]
B+ Input Current [mA]
600
0
A- Input Current [mA]
800
B- Input Current [mA]
A+ Input Current [mA]
800
0
4
PSET
PS
PA
PB
PR
ATM
3
600
2
400
1
200
0
0
2
4
6
Time [sec]
8
10
0
0
1
2
3
4
5
Time [sec]
6
Fixed Set Pump Pressure
April 11, 2006
40
MAPPING LEARNING & CONTROL
250
Desired
Actual
 FIXED TABLE CONTROL
1000
1000
800
600
400
200
0
2
4
6
Time [sec]
8
800
0
0
2
4
6
Time [sec]
8
10
Velocity [mm/s]
-50
-100
-150
-200
-250
0
2
3
4
5
Time [sec]
6
7
8
9
10
PSET
PS
PA
PB
PR
ATM
7
0
2
4
6
Time [sec]
8
6
10
600
5
4
3
400
2
200
0
1
0
2
4
6
Time [sec]
8
10
0
April 11, 2006
1
9
200
800
200
0
400
1000
400
50
8
1000
600
100
600
0
10
150
Pressure [MPa]
800
0
A- Input Current [mA]
B+ Input Current [mA]
1200
B- Input Current [mA]
A+ Input Current [mA]
 Pump control + INCOVA control
 No adaptation of inverse Kv
mapping
 Same inverse Kv mapping for all
valves
200
0
1
2
3
4
5
Time [sec]
6
7
8
Pump Margin Control
9
10
41
MAPPING LEARNING & CONTROL
 FIXED TABLE CONTROL
 VELOCITY ERRORS
 Inaccuracy of inverse tables
 Physical limitations/constraints
50
45
40
Steady State Speed Error V - Vdes [mm/s]
 Pump control + INCOVA control
 No adaptation of inverse Kv
mapping
 Same inverse Kv mapping for all
valves
35
30
25
20
15
10
5
0
10
20
30
40
50
60
70
80
90
100
Commanded Retract Speed [mm/s]
Velocity Errors with Pump Margin
Control and Fixed Inverse Tables
April 11, 2006
42
MAPPING LEARNING & CONTROL
 LEARNING APPLIED TO NONLINEAR SYSTEM
K Î [0, K MAX ]
K k 1  F  K k , isol,k 
isol,k Î [0,1500mA ]
 CONTROL DESIGN
 Tracking Error:
 Error Dynamics:
ek = K k -
d
Kk





F

F
 i  di   o e ,  
e  
ek 1  
sol, k
k
k
 sol,k
 K k d K , d i  k  isol,k d d
 k sol,k  
 Kk , isol,k  


ek 1  d J k ek  d Qk  isol,k  d isol,k 
April 11, 2006
43
MAPPING LEARNING & CONTROL
 LEARNING APPLIED TO NONLINEAR SYSTEM
K Î [0, K MAX ]
K k 1  F  K k , isol,k 
isol,k Î [0,1500mA ]
 CONTROL DESIGN
 Error Dynamics:
ek 1  d J k ek  d Qk  isol,k  d isol,k 
 Deadbeat Control Law:
isol,k = disol,k - dQk- 1 dJ kek
April 11, 2006
44
MAPPING LEARNING & CONTROL
 LEARNING APPLIED TO NONLINEAR SYSTEM
K Î [0, K MAX ]
K k 1  F  K k , isol,k 
isol,k Î [0,1500mA ]
 CONTROL DESIGN
 Deadbeat Control Law:
isol,k = disol,k - dQk- 1 dJ kek
 Proposed Control Law:
isol,k = g (d K k )
isol,k   isol,k  isol,k   Q J e
1
k 1 k 1 k
April 11, 2006
%T F (d K )
D i%
=
W
sol,k
k
k
45
MAPPING LEARNING & CONTROL
Nominal
inverse
mapping
uk  Qk11J k 1ek  uk  uk
isol,k  Qk11 J k 1ek   isol,k  isol,k 
Inverse
Mapping
Correction
NLPN
dx
uk
xk
PLANT
k
Adaptive
Proportional
Feedback
April 11, 2006
Jacobian
Controllability
Estimation
46
MAPPING LEARNING & CONTROL
 MODELING: Single Valve
Command
8000
Actual
Desired
1
Fac
Kv d
Kv d
7000
isol [mA]
ERROR [LPH/sqrtMPa]
6000
Flow Conductance [LPH/sqrtMPa]
Kv m
isol
isol
Kv
5000
Kv [LPH/sqrtMPa]
10
1
4000
Vm
PS
PS [MPa]
Q
positive
8
INVERSE
VALVE
CONTROL
3000
PA
Q [LPH]
PA [MPa]
EHPV A+
2000
1000
0
1200
-1000
0
5
10
15
20
25
30
NLPN
Prop
Nom
35
Time [sec]
1000
12
Solenoid Input Current [mA]
800
10
Relative Error [%]
8
6
600
400
200
0
4
-200
2
0
0
5
10
15
20
25
30
35
Time [sec]
0
5
10
15
20
Time [sec]
April 11, 2006
25
30
35
E rel @ (K -
d
K ) dK
47
MAPPING LEARNING & CONTROL
 MODELING: Full system
STANDARD METERING EXTEND & STANDARD METERING RETRACT FUNCTIONS
(w/ Pump Pressure Control)
EHPV LEARNING CONTROL SIMULATION
Patrick Opdenbosch
March 06, 2006
ver 1.0
PS [MPa]
PMAX =280
8sec => Vmax =50
6sec => Vmax =50
4sec => Vmax =80
2sec => Vmax = 200
Command
PMAX =200
8sec => Vmax =30
6sec => Vmax =50
4sec => Vmax =80
2sec => Vmax = 150
v el
P [MPa]
P
PR [MPa]
ATM
1
Fac
x [mm]
pos
PS
v _des
PB
M
v el
PR
Ps
CPS
PS
PS
Kv B-
PA
PUMP
MARGIN
CONTROL
Kv BKv A+
PUMP
P
PR
Tank
v _des
Kv B+
iB-
iA+
iA+
Kv APB
PB [MPa]
PA
PR
INCOVA
PA [MPa]
QB
PS
iA-
iA-
iB+
iB+
Vm
QA
PB
PA
PA
PB
iB-
Kv AKv A+
v [mm/s]
pos
Kv B+
QS
EHPV CONTROL
Fload
INCOVA CONTROL
EHPV WHEATSTONE
QR
Q [LPH]
xdot
PA
F
PB
Piston Friction
April 11, 2006
Friction [kN]
48
MAPPING LEARNING & CONTROL
 MODELING: Full system
60
Actual
Desired
40
Piston Speed [mm/s]
20
Supply, Piston, and Return Pressures
0
6
-20
PS
PA
PB
PR
atm
5
-40
0
10
20
30
Time [sec]
40
50
60
Actual and Commanded Speeds
Pressure [MPa]
4
-60
3
2
1
0
April 11, 2006
0
10
20
30
Time [sec]
40
50
60
49
MAPPING LEARNING & CONTROL
 MODELING: Full system (Solenoid Currents)
Solenoid B-
Solenoid B+
900
900
Nom
NLPN
Prop
700
700
600
600
500
400
300
500
400
300
200
200
100
100
0
0
-100
-100
0
10
20
30
Time [sec]
40
50
Nom
NLPN
Prop
800
Solenoid Input Current [mA]
Solenoid Input Current [mA]
800
60
0
10
20
Solenoid A-
50
60
900
Nom
NLPN
Prop
800
700
700
600
600
500
400
300
500
400
300
200
200
100
100
0
0
0
10
April 11, 2006
20
30
Time [sec]
40
50
Nom
NLPN
Prop
800
Solenoid Input Current [mA]
Solenoid Input Current [mA]
40
Solenoid A+
900
-100
30
Time [sec]
60
-100
0
10
20
30
Time [sec]
40
50
60
50
MAPPING LEARNING & CONTROL
EXPERIMENTAL:
 Learning applied to retract motion
Valve motion
Low
Pressure
High
Pressure
Piston motion
April 11, 2006
51
MAPPING LEARNING & CONTROL
EXPERIMENTAL: (30 mm/s commanded)
ADAPTIVE Retract Control: Pump Margin Pressure Control
ADAPTIVE Retract Control: Pump Margin Pressure Control
370
100
360
80
350
60
340
40
330
20
Velocity [mm/s]
Position [mm]
Desired
Actual
320
310
0
-20
300
-40
290
-60
280
-80
270
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
-100
5
0
0.5
1
50
9
40
8
30
7
20
6
5
PSET
PS
PA
PB
PR
ATM
4
3
April 11, 2006
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
4
4.5
5
-20
-40
1
3.5
-10
1
0.5
3
0
-30
0
2.5
Time [sec]
10
2
0
2
ADAPTIVE Retract Control: Pump Margin Pressure Control
10
Velocity Error: Vdes - V [mm/s]
Pressure [MPa]
ADAPTIVE Retract Control: Pump Margin Pressure Control
1.5
4
4.5
5
-50
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
52
MAPPING LEARNING & CONTROL
EXPERIMENTAL:
800
B- Nominal Input Current [mA]
A- Nominal Input Current [mA]
800
600
400
200
0
0
1
2
3
Time [sec]
4
200
0
1
2
3
Time [sec]
4
5
0
1
2
3
Time [sec]
4
5
200
B- NLPN Input Current [mA]
A- NLPN Input Current [mA]
April 11, 2006
400
0
5
150
100
50
0
-50
600
0
1
2
3
Time [sec]
4
5
150
100
50
0
-50
53
MAPPING LEARNING & CONTROL
EXPERIMENTAL:
 Learning applied to all four (4) EHPVs
Valve motion
Low
Pressure
High
Pressure
Piston motion
April 11, 2006
54
MAPPING LEARNING & CONTROL
100
Desired
Actual
 ADAPTIVE TABLE CONTROL
60
40
Velocity [mm/s]
 Pump margin control + INCOVA
control
 NLPN approximation of inverse Kv
mapping using 4 NLPN
80
20
0
-20
-40
-60
-80
220
-100
200
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
Velocity Performance
180
20
15
140
10
120
Velocity Error: Vdes - V [mm/s]
Position [mm]
160
100
80
60
40
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
0
-5
5
Piston Displacement: Retraction
-10
-15
-20
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
Velocity Errors
April 11, 2006
55
MAPPING LEARNING & CONTROL
160
 ADAPTIVE TABLE CONTROL
Desired
Actual
120
100
Velocity [mm/s]
 Pump margin control + INCOVA
control
 NLPN approximation of inverse Kv
mapping using 4 NLPN
140
80
60
40
20
300
0
0
250
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
4.5
5
Velocity Performance
200
140
120
150
100
100
50
0
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
4.5
5
Piston Displacement: Extension
Velocity Error: Vdes - V [mm/s]
Position [mm]
0.5
80
60
40
20
0
-20
0
0.5
1
1.5
2
2.5
Time [sec]
3
3.5
4
Velocity Errors
April 11, 2006
56
PRESENTATION OUTLINE

FLOW CONDUCTANCE ESTIMATION
 Reported work
 Approaches

ONLINE FLOW CONDUCTANCE
MAPPING LEARNING AND CONTROL
 Fixed inverse mapping
 Learning mapping response


April 11, 2006
FUTURE WORK
CONCLUSION
57
FUTURE WORK
 Investigate online application of observer
 Complete velocity error comparison between system’s
response under fixed inverse tables and adaptive
inverse tables
 Study convergence properties of adaptive proportional
input and its impact on overall stability
 Improve learning applied to 4 EHPVs by NLPN +
adaptive proportional feedback
 Incorporate fault Diagnostics capabilities along with
mapping learning
April 11, 2006
58
PRESENTATION OUTLINE

FLOW CONDUCTANCE ESTIMATION
 Reported work
 Approaches

ONLINE FLOW CONDUCTANCE
MAPPING LEARNING AND CONTROL
 Fixed inverse mapping
 Learning mapping response


April 11, 2006
FUTURE WORK
CONCLUSION
59
CONCLUSIONS
 Discussed several approaches to the flow conductance
estimation problem
 Presented a learning method for estimating flow
conductance
 Presented performance of the INCOVA control system
under constant and margin pump control for fixed
inverse valve opening mapping
 Presented Simulations and experimental results on
applying learning control to the Wheatstone Bridge
EHPV arrangement
April 11, 2006
60