Transcript Slide 1
AUTO-CALIBRATION AND CONTROL APPLIED TO ELECTRO-HYDRAULIC VALVES EXPERIMENTS ON HUSCO BLUE TELEHANDLER August 18, 2006 PATRICK OPDENBOSCH Graduate Research Intern INCOVA (262) 513 4408 [email protected] HUSCO International W239 N218 Pewaukee Rd. Waukesha, WI 53188-1638 MOTIVATION 8000 7000 US PATENT # 6,732,512 & 6,718,759 Flow Conductance, Kv [LPH/sqrtMPa] HUSCO’S CONTROL TOPOLOGY 6000 5000 4000 3000 2000 1000 0 0 200 400 600 800 1000 Coil Current [mA] 1200 1400 1600 1800 Steady State Mapping (Design) 1800 1600 1400 Coil Current [mA] 1200 1000 800 600 400 200 0 Hierarchical control: System controller, pressure controller, function controller 0 1000 2000 3000 4000 5000 Flow Conductance, Kv [LPH/sqrtMPa] 6000 7000 8000 Inverse Mapping (Control) HUSCO OPEN LOOP CONTROL FOR EHPV’s 2 MOTIVATION Constant Temperature (T = 30 C) 100 Kv [(LPM)/sqrt(MPa)] HUSCO’S CONTROL TOPOLOGY 120 80 60 40 20 US PATENT # 6,732,512 & 6,718,759 0 1.5 5 1 4 3 0.5 2 1 0 Input [A] 0 dP [MPa] Steady State Mapping (Design) T = 20 C 1.4 1.2 Input [A] 1 0.8 0.6 0.4 0.2 0 5 4 100 3 80 60 2 40 1 dP [MPa] Hierarchical control: System controller, pressure controller, function controller 3 20 0 0 Kv [(LPM)/sqrt(MPa)] Inverse Mapping (Control) MOTIVATION Time Commanded Kv Actual Kv Commanded Velocity Actual Velocity Time 4 MOTIVATION Flow conductance online estimation Accuracy Computation effort 120 Kv [(LPM)/sqrt(MPa)] 100 80 60 40 20 Online inverse flow conductance mapping learning and control Effects by input saturation and timevarying dynamics Maintain tracking error dynamics stable while learning Constant Temperature (T = 30 C) 0 1.5 5 1 4 3 0.5 2 1 0 Input [A] 0 dP [MPa] T = 20 C 1.4 1.2 1 Input [A] 0.8 0.6 0.4 0.2 0 5 4 Fault diagnostics 100 3 80 60 2 40 1 dP [MPa] How can the learned mappings be used for fault detection 5 20 0 0 Kv [(LPM)/sqrt(MPa)] PRESENTATION OUTLINE MOTIVATION TOPIC REVIEW SETUP IMPROVEMENTS MAPPING LEARNING & CONTROL EXPERIMENTAL RESULTS FUTURE WORK CONCLUSIONS 6 TOPIC REVIEW PURDUE PAPERS Liu, S. and Yao, B., (2005), Automated modeling of cartridge valve flow mapping, in Proc: IEEE/ASME International Conference on Advanced Intelligent Mechatronics pp. 789-794 Liu, S. and Yao, B., (2005), On-board system identification of systems with unknown input nonlinearity and system parameters, in Proc: ASME International Mechanical Engineering Congress and Exposition Liu, S. and Yao, B., (2005), Sliding mode flow rate observer design, in Proc: Sixth International Conference on Fluid Power Transmission and Control pp. 69-73 7 TOPIC REVIEW CATERPILLAR PATENTS Aardema, J.A. and Koehler, D.W., (1999) System and method for controlling an independent metering valve, U.S. Patent (5,960,695) Aardema, J.A. and Koehler, D.W., (1999) System and method for controlling an independent metering valve, U.S. Patent (5,947,140) Kozaki, T., Ishikawa, H., Yasui, H., et al., (1991) Position control device and automotive suspension system employing same, U.S. Patent (5,004,264) NEW PATENTS Reedy, J.T., Cone, R.D., Kloeppel, G.R., et al., (2006) Adaptive position determining system for hydraulic cylinder, U.S. Patent (20060064971) Du, H., (2006) Hydraulic system health indicator, U.S. Patent (7,043,975) Wear, J.A., Du, H., Ferkol, G.A., et al., (2006) Electrohydraulic control system, U.S. Patent (20060095163) 8 TOPIC REVIEW CATERPILLAR PATENTS 20060064971 “Adaptive Position Determining System for Hydraulic Cylinder” Limit Switches 9 TOPIC REVIEW CATERPILLAR PATENTS Long-Jang Li, US Patent 5,942,892 (1999) 5,004,264 “Position Control Device and Automotive Suspension System Employing Same” Position Detector 10 TOPIC REVIEW CATERPILLAR PATENTS 20060095163 “Electrohydraulic Control System” Position/Velocity sensor Adaptive scheme: no details found 11 TOPIC REVIEW CATERPILLAR PATENTS 7,043,975 “Hydraulic System Health Indicator” Using Lyapunov stability theory Health Monitoring using Bulk modulus and other model-based parameters (Position/velocity sensor) Based on pump pressure discharge dynamics or cylinder head end control pressure 12 PRESENTATION OUTLINE MOTIVATION TOPIC REVIEW SETUP IMPROVEMENTS MAPPING LEARNING & CONTROL EXPERIMENTAL RESULTS FUTURE WORK CONCLUSIONS 13 SETUP MOTION CONTROL Independent coil current control SIEMENS controller Supply & return pressure from ISP Supply KSA KSB KAR HUSCO Blue Telehandler KBR Return Boom Function Boom Function Kinematics 14 SETUP MOTION CONTROL Independent coil current control SIEMENS controller Supply & return pressure from ISP HUSCO Blue Telehandler PS Pump KSA KSB Unloader PA Diesel Engine Relief Valve PR PB KAR Filter Tank 15 KBR Boom Cylinder PRESENTATION OUTLINE MOTIVATION TOPIC REVIEW SETUP IMPROVEMENTS MAPPING LEARNING & CONTROL EXPERIMENTAL RESULTS FUTURE WORK CONCLUSIONS 16 IMPROVEMENTS PUMP CONTROL 35 Psp PS PA PB PR 30 25 Ripples Pressure override for pump pressure control (ISP code) Pressure [MPa] 20 15 10 5 0 -5 0 2 4 6 8 10 Time [sec] 17 12 14 16 18 20 IMPROVEMENTS DATA SHOWN: Margin added on retract metering mode (PB signal is user commanded, not actual workport pressure) PUMP CONTROL 35 PSsp PS PR PB 30 25 Current override for unloader coil current control (ISP code) Pressure [MPa] 20 15 10 5 0 -5 0 2 4 6 8 10 Time [sec] 18 12 14 16 18 20 IMPROVEMENTS ANTI-CAVITATION INCOVA Parametric Valve Calculation Standard Metering Retract 8000 KOUT_MAX PIN_MIN 7000 5000 4000 KIN_MAX AR K Unconstrained Operating Point [LPH/sqrtMPa] 6000 3000 2000 Keq 1000 0 Constrained Operating Point POUT_MAX 0 1000 2000 20 3000 5000 4000 KSB [LPH/sqrtMPa] 6000 7000 8000 IMPROVEMENTS ANTI-CAVITATION Position [mm] 800 Velocity [kph] 600 55 0.5 56 57 58 Time [sec] 59 60 61 0 -0.5 Pressure [MPa] Kv [LPH/sqrt(MPa)] Cavitation 700 Meas Des -1 55 15 10 5 2000 0 55 57 58 Time [sec] 59 60 61 56 57 58 Time [sec] 59 60 61 56 57 58 Time [sec] 59 60 61 PS PA PB PR 0 55 6000 4000 56 A+ B+ AB- 21 900 70 Angle Position [mm] IMPROVEMENTS 750 55 600 40 450 25 300 10 150 -5 ANTI-CAVITATION 0 0 2 4 6 8 10 Time [sec] 12 14 16 18 -20 20 250 Speed [mm/s] 150 Flow Sharing 50 -50 Vdes Vcmd Vmeas -150 -250 0 2 4 6 8 10 Time [sec] 12 14 16 18 20 4 6 8 10 Time [sec] 12 14 16 18 20 35 Psp PS PA PB PR 30 25 Pressure [MPa] 20 15 10 5 No Cavitation 0 -5 0 2 22 Angle [deg] Position IMPROVEMENTS LEARNING Supply KSA KSB EXTEND KAR KBR Return Boom Function 23 IMPROVEMENTS LEARNING Supply KSA KSB RETRACT KAR KBR Return Boom Function 24 IMPROVEMENTS LEARNING Supply KSA KSB EXTEND/RETRACT KAR KBR Return Boom Function 25 PRESENTATION OUTLINE MOTIVATION TOPIC REVIEW SETUP IMPROVEMENTS MAPPING LEARNING & CONTROL EXPERIMENTAL RESULTS FUTURE WORK CONCLUSIONS 26 MAPPING LEARNING & CONTROL LEARNING APPLIED TO NONLINEAR SYSTEM K Î [0, K MAX ] K k 1 F K k , isol,k isol,k Î [0,1500mA] MAPPING TO BE LEARNED (simplified) 1800 1600 Coil Current Command [mA] 1400 1200 1000 Expected curve shift 800 600 400 200 0 0 1000 2000 3000 4000 5000 Flow Conductance, Kv [LPH/sqrtMPa] 27 6000 7000 8000 MAPPING LEARNING & CONTROL LEARNING APPLIED TO NONLINEAR SYSTEM K Î [0, K MAX ] K k 1 F K k , isol,k isol,k Î [0,1500mA] MAPPING TO BE LEARNED (simplified) 2000 Map Grid 1800 1600 Coil Current [mA] 1400 1200 Expected curve shift 1000 800 600 400 200 0 0 2000 4000 6000 8000 Flow Conductance, Kv [LPH/sqrtMPa] 28 10000 12000 MAPPING LEARNING & CONTROL LEARNING APPLIED TO NONLINEAR SYSTEM K Î [0, K MAX ] K k 1 F K k , isol,k isol,k Î [0,1500mA] CONTROL DESIGN Tracking Error: Error Dynamics: ek = K k - d Kk F d Kk , d isol,k F d Kk , d isol,k ek isol,k d isol,k o ek , k ek 1 Kk isol,k Linear Time Varying System ek 1 d J k ek d Qk isol,k d isol,k 29 MAPPING LEARNING & CONTROL LEARNING APPLIED TO NONLINEAR SYSTEM K Î [0, K MAX ] K k 1 F K k , isol,k CONTROL DESIGN Error Dynamics: ek 1 d J k ek d Qk isol,k d isol,k Deadbeat Control Law: Closed loop isol,k = disol,k - dQk- 1 dJ kek ek 1 0 30 isol,k Î [0,1500mA] MAPPING LEARNING & CONTROL LEARNING APPLIED TO NONLINEAR SYSTEM K Î [0, K MAX ] K k 1 F K k , isol,k isol,k Î [0,1500mA] CONTROL DESIGN Deadbeat Control Law: isol,k = disol,k - dQk- 1 dJ kek Proposed Control Law: isol,k = g (d K k ) isol,k isol, k isol, k Q J k 1ek 1 k 1 31 %T F (d K ) D i% = W sol,k k k MAPPING LEARNING & CONTROL Nominal inverse mapping Inverse Mapping Correction dK V icmd Servo NLPN Adaptive Proportional Feedback EHPV Jacobian Controllability Estimation 32 KV MAPPING LEARNING & CONTROL LEARNING APPLIED TO NONLINEAR SYSTEM K Î [0, K MAX ] K k 1 F K k , isol,k isol,k Î [0,1500mA] CONTROL DESIGN Proposed Control Law: isol,k = g (d K k ) isol,k isol, k isol, k Q J k 1ek 1 k 1 Closed loop ek 1 d J k ek d Qk d i sol, k %T F (d K ) D i% = W sol,k k k isol,k Qk11 J k 1ek d isol,k J k d Qk Qk11 J k 1 ek d Qk isol,k isol,k d isol,k 33 MAPPING LEARNING & CONTROL Parameter "a" Estimation 1 0.9 0.8 0.7 0.6 a IDENTIFICATION DESIGN Methods: yk Tˆ Least Squares (Recursive) 0.5 0.4 ▫ Noise rejection ▫ Poor time varying parameter tracking capabilities (add covariance reset and forgetting factor – dynamic or static) ▫ New research suggest variablelength moving window* Gradient Based True Broyden RLS RLS w/EW 0.3 0.2 0.1 0 0 1 2 3 4 5 Time [sec] 6 7 8 9 10 Parameter "a" Estimation 1.4 True Broyden RLS RLS w/EW 1.2 1 a 0.8 ▫ Sensitive to noise ▫ Better time varying parameter tracking capabilities ▫ Gradient step size must be chosen carefully 0.6 0.4 0.2 0 0 1 2 3 4 5 Time [sec] 6 7 8 9 10 Identification of time varying parameter for a linear system (*) Jiang, J. and Zhang, Y. (2004), A Novel Variable-Length Sliding Window Blockwise Least-Squares Algorithm for Online Estimation of Time-Varying Parameters, Intl. J. Adaptive Ctrl & Signal Proc., Vol 18, No. 6, pp. 505-521. 34 MAPPING LEARNING & CONTROL IDENTIFICATION DESIGN ek 1 d J k ek d Qk isol,k d isol,k Approximations: Previous-point Linearization Kk Kk Kk 1 K k 1 J k*1K k Qk*1 isol,k isol, k 1 Stack Operator S ( x) x T 1 T 2 x x , where x x1 T n T 35 x2 xn MAPPING LEARNING & CONTROL IDENTIFICATION DESIGN ek 1 d J k ek d Qk isol,k d isol,k Approximations: Previous-point Linearization Kk Kk Kk 1 K k 1 J k*1K k Qk*1 isol,k isol, k 1 Stack Operator Properties S (x z ) S x S z S xyz z T x S y 36 MAPPING LEARNING & CONTROL IDENTIFICATION DESIGN ek 1 d J k ek d Qk isol,k d isol,k Approximations: Previous-point Linearization Kk Kk Kk 1 K k 1 J k*1K k Qk*1 isol,k isol, k 1 Stack Operator Properties xz x11z xm1z 37 x1n z xmn z MAPPING LEARNING & CONTROL IDENTIFICATION DESIGN ek 1 d J k ek d Qk isol,k d isol,k Approximations: Previous-point Linearization K k 1 J k*1K k Qk*1 isol,k isol, k 1 K k 1 S J k*1K k S Qk*1 isol,k isol, k 1 S I n J k*1K k S I nQk*1 isol,k isol, k 1 K I n S J T k K kT I n | * k 1 i sol, k i sol, k isol, k 1 I n S Qk*1 T isol, k 1 38 T T * * I n S J k 1 | S Qk 1 MAPPING LEARNING & CONTROL IDENTIFICATION DESIGN ek 1 d J k ek d Qk isol,k d isol,k Approximations: Previous-point Linearization K k 1 J k*1K k Qk*1 isol,k isol, k 1 K k 1 K kT I n | i sol, k isol,k 1 T T * * I n S J k 1 | S Qk 1 yk Tˆ How are (dJ,dQ) and (J*,Q*) related? 39 PRESENTATION OUTLINE MOTIVATION TOPIC REVIEW SETUP IMPROVEMENTS MAPPING LEARNING & CONTROL EXPERIMENTAL RESULTS FUTURE WORK CONCLUSIONS 40 EXPERIMENTAL RESULTS Nominal inverse mapping icmd Servo dK V EHPV 1800 1600 Coil Current Command [mA] 1400 1200 1000 800 600 400 Every valve uses a generic Table 200 0 0 1000 2000 3000 4000 5000 Flow Conductance, Kv [LPH/sqrtMPa] 6000 7000 8000 41 KV EXPERIMENTAL RESULTS PUMP CONTROL: MARGIN 900 70 Angle 750 55 600 40 450 25 300 10 150 -5 0 0 2 4 6 8 10 Time [sec] 12 14 16 18 -20 20 250 Vdes Vcmd Vmeas Speed [mm/s] 150 50 -50 -150 -250 0 2 4 6 8 10 Time [sec] 42 12 14 16 18 20 Angle [deg] Position [mm] Position EXPERIMENTAL RESULTS 35 Psp PS PA PB PR 30 25 Pressure [MPa] 20 15 10 5 0 -5 0 2 4 6 8 10 Time [sec] 43 12 14 16 18 20 EXPERIMENTAL RESULTS 8000 8000 KSAc KSAm 6000 5000 4000 3000 2000 1000 0 -1000 0 5 10 Time [sec] 15 5000 4000 3000 2000 1000 -1000 20 0 5 10 Time [sec] 15 20 8000 KARc KARm 7000 6000 KBRc KBRm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 6000 0 8000 5000 4000 3000 2000 1000 0 -1000 KSBc KSBm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 7000 6000 5000 4000 3000 2000 1000 0 0 5 10 Time [sec] 15 -1000 20 44 0 5 10 Time [sec] 15 20 EXPERIMENTAL RESULTS PUMP CONTROL: PS_SETPOINT 900 70 Angle 750 55 600 40 450 25 300 10 150 -5 0 0 2 4 6 8 10 Time [sec] 12 14 16 18 -20 20 250 Vdes Vcmd Vmeas Speed [mm/s] 150 50 -50 -150 -250 0 2 4 6 8 10 Time [sec] 45 12 14 16 18 20 Angle [deg] Position [mm] Position EXPERIMENTAL RESULTS 35 Psp PS PA PB PR 30 25 Pressure [MPa] 20 15 10 5 0 -5 0 2 4 6 8 10 Time [sec] 46 12 14 16 18 20 EXPERIMENTAL RESULTS 8000 8000 KSAc KSAm 6000 5000 4000 3000 2000 1000 0 -1000 0 5 10 Time [sec] 15 5000 4000 3000 2000 1000 -1000 20 0 5 10 Time [sec] 15 20 8000 KARc KARm 7000 6000 KBRc KBRm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 6000 0 8000 5000 4000 3000 2000 1000 0 -1000 KSBc KSBm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 7000 6000 5000 4000 3000 2000 1000 0 0 5 10 Time [sec] 15 -1000 20 47 0 5 10 Time [sec] 15 20 EXPERIMENTAL RESULTS Nominal inverse mapping Inverse Mapping Correction dK V icmd Servo NLPN 48 EHPV KV EXPERIMENTAL RESULTS PUMP CONTROL: MARGIN 900 70 Angle 750 55 600 40 450 25 300 10 150 -5 0 0 2 4 6 8 10 Time [sec] 12 14 16 18 -20 20 250 Vdes Vcmd Vmeas Speed [mm/s] 150 50 -50 -150 -250 0 2 4 6 8 10 Time [sec] 49 12 14 16 18 20 Angle [deg] Position [mm] Position EXPERIMENTAL RESULTS 35 Psp PS PA PB PR 30 25 Pressure [MPa] 20 15 10 5 0 -5 0 2 4 6 8 10 Time [sec] 50 12 14 16 18 20 EXPERIMENTAL RESULTS 8000 8000 KSAc KSAm 6000 5000 4000 3000 2000 1000 0 -1000 0 5 10 Time [sec] 15 5000 4000 3000 2000 1000 -1000 20 0 5 10 Time [sec] 15 20 8000 KARc KARm 7000 6000 KBRc KBRm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 6000 0 8000 5000 4000 3000 2000 1000 0 -1000 KSBc KSBm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 7000 6000 5000 4000 3000 2000 1000 0 0 5 10 Time [sec] 15 -1000 20 51 0 5 10 Time [sec] 15 20 EXPERIMENTAL RESULTS PUMP CONTROL: PS_SETPOINT 900 70 Angle 750 55 600 40 450 25 300 10 150 -5 0 0 2 4 6 8 10 Time [sec] 12 14 16 18 -20 20 250 Vdes Vcmd Vmeas Speed [mm/s] 150 50 -50 -150 -250 0 2 4 6 8 10 Time [sec] 55 12 14 16 18 20 Angle [deg] Position [mm] Position EXPERIMENTAL RESULTS 35 Psp PS PA PB PR 30 25 Pressure [MPa] 20 15 10 5 0 -5 0 2 4 6 8 10 Time [sec] 56 12 14 16 18 20 EXPERIMENTAL RESULTS 8000 8000 KSAc KSAm 6000 5000 4000 3000 2000 1000 0 -1000 0 5 10 Time [sec] 15 5000 4000 3000 2000 1000 -1000 20 0 5 10 Time [sec] 15 20 8000 KARc KARm 7000 6000 KBRc KBRm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 6000 0 8000 5000 4000 3000 2000 1000 0 -1000 KSBc KSBm 7000 Kv [LPH/sqrt(MPa)] Kv [LPH/sqrt(MPa)] 7000 6000 5000 4000 3000 2000 1000 0 0 5 10 Time [sec] 15 -1000 20 57 0 5 10 Time [sec] 15 20 EXPERIMENTAL RESULTS Nominal inverse mapping Inverse Mapping Correction dK V icmd Servo NLPN FIXED Proportional Feedback 58 EHPV KV EXPERIMENTAL RESULTS PUMP CONTROL: MARGIN 70 w/ FB w/o FB 65 60 55 Angle [deg] 50 45 40 35 30 25 20 15 0 10 20 30 Time [sec] 59 40 50 60 EXPERIMENTAL RESULTS 80 60 40 Speed [mm/s] 20 0 -20 -40 -60 -80 Vcmd Vm w/ FB Vm w/o FB 0 10 20 30 Time [sec] 60 40 50 60 EXPERIMENTAL RESULTS Pressure Responses w/FB 30 Psp PS PA PB PR 25 Pressure [MPa] 20 15 10 5 0 0 10 20 30 Time [sec] 61 40 50 60 EXPERIMENTAL RESULTS Pressure Responses w/o FB 30 Psp PS PA PB PR 25 Pressure [MPa] 20 15 10 5 0 0 10 20 30 Time [sec] 62 40 50 60 EXPERIMENTAL RESULTS RED w/FB , BLUE w/o FB 3000 KSAc KSAm KSAc KSAm 2500 Kv [LPH/sqrt(MPa)] 2000 1500 1000 500 0 0 10 20 30 Time [sec] 63 40 50 60 EXPERIMENTAL RESULTS RED w/FB , BLUE w/o FB 3000 KARc KARm KARc KARm 2500 Kv [LPH/sqrt(MPa)] 2000 1500 1000 500 0 0 10 20 30 Time [sec] 64 40 50 60 EXPERIMENTAL RESULTS RED w/FB , BLUE w/o FB 3000 KBRc KBRm KBRc KBRm 2500 Kv [LPH/sqrt(MPa)] 2000 1500 1000 500 0 0 10 20 30 Time [sec] 65 40 50 60 EXPERIMENTAL RESULTS RED w/FB , BLUE w/o FB 3000 KSBc KSBm KSBc KSBm 2500 Kv [LPH/sqrt(MPa)] 2000 1500 1000 500 0 0 10 20 30 Time [sec] 66 40 50 60 PRESENTATION OUTLINE MOTIVATION TOPIC REVIEW SETUP IMPROVEMENTS MAPPING LEARNING & CONTROL EXPERIMENTAL RESULTS FUTURE WORK CONCLUSIONS 68 FUTURE WORK Improve EHPV performance using adaptive proportional feedback Study convergence properties of adaptive proportional input and its impact on overall stability Incorporate fault Diagnostics capabilities along with mapping learning Refine pump controls 69 PRESENTATION OUTLINE MOTIVATION TOPIC REVIEW SETUP IMPROVEMENTS MAPPING LEARNING & CONTROL EXPERIMENTAL RESULTS FUTURE WORK CONCLUSIONS 70 CONCLUSIONS The performance of the INCOVA control system under Ps_setpoint and margin pump control was improved when using mapping learning as oppose to using fixed inverse valve opening mapping. Satisfactory experimental results were obtained on applying feedforward learning and fixed proportional control to four (4) EHPVs Experimental verification of improved commanded velocity achievement using mapping learning was presented The need for good velocity sensor was observed (potential idea for customized sensor was presented) 71 CONCLUSIONS More refined code (constraints) allowed better control Unresolved Issues still exist with parameter estimation and adaptive proportional control portion Experimental validation of faster mapping learning with proportional feedback in place (fixed) Learning grid can be fixed based on curve shifting behavior 72 QUESTIONS? 73