Hypoxia 缺 氧

Download Report

Transcript Hypoxia 缺 氧

Hypoxia
缺 氧
Concept of Hypoxia
Deficiency
Decrease
Changes
O2Delivery
Cellular
O2Utilization
ATP
Function
Metabolism
Structure
因组织供氧减少或用氧障碍引起细胞代谢、功
能和形态结构异常变化的病理过程称为缺氧。
The basic courses of respiration
Taking
Carry
Transportation
Utilization
Parameters of blood oxygen
1. Partial pressure of oxygen,PO2 (氧分压)
PO2 is the tension produced by oxygen molecules
physically dissolved in plasma.
Normal value
PaO2:13.3kPa(100mmHg)0.3ml%
PvO2:5.33kPa (40mmHg)
Determinant factors
PiO2 ,PAO2,gas diffusion
Significance
Determine O2 saturation of blood
2. Oxygen binding capacity,CO2max (氧容量)
Maximal amount of oxygen that can be potentially
bound by the haemoglobin is called oxygen binding
capacity of haemoglobin (PO2 150mmHg, PCO2
40mmHg, 38℃) .
Normal value
20ml%(8.92mmol/L)
Determinant factors
The quantity and quality of Hb.
Significance
Influence the ability of blood to carry O2(oxygen content).
3. Oxygen content,CO2(氧含量)
The total oxygen content of blood 100ml includes
oxygen that is bound to haemoglobin an physically
dissolved in plasma.
Normal value
CaO2:19ml%
CvO2:12~14ml%
Determinant factors
PO2 and CO2max
Significance
CaO2: oxygen supplement
CvO2: oxygen consumption
4. Oxygen saturation,SO2 (氧饱和度)
SO2 is the percentage of haemoglobin present as
oxyhaemoglobin.
Normal value
SaO2:93~98%
SvO2:70~75%
Determinant factors
PO2
Significance
Influence oxygen content
Arteriovenous blood oxygen difference
(A-VDO2)
19ml/dl
A.
O2 O2
14ml/dl
O2 O2
5ml/dl
O2
V.
PiO2(氧分压)
CO2 (氧含量)
PaO2
(氧分压)
≈SO2 (氧饱和度)
CO2max (氧容量)
Oxygen–haemoglobin dissociation
curve
100
Oxygen saturation %
90
80
2,3-DPG
H+ , CO2 
2,3-DPG
Temperature
H+, CO2
70
Temperature
60
50
Affinity normal
40
Affinity ↓
30
Affinity ↑
20
p50
10
0
10
20
30
40
50
60
70
PO2(mmHg)
80
90 100
Oxygen supply of tissue
= CaO2 ×blood flow
Oxygen consumption of tissue
=(CaO2- CvO2)×blood flow
Classification
Etiology
Pathogenesis
发生缺氧的基本环节
Atmosphere
Decreased PiO2
Ventilation & Diffusion
External respiratory dysfunction
Binding with Haemoglobin
Transportation of gases
in blood
Venous-to-arterial shunts
Taking and utilization of
oxygen in tissue cells
Hypotonic
hypoxia
Hypotonic hypoxia(低张性缺氧)
Hypotonic hypoxia is characterized
by the
decrease of PaO2 ( < 60mmHg ) , also called
hypoxic hypoxia.
Etiology
 Decreased PO2 of inspired air:
Atmospheric hypoxia(大气性缺氧)
Plateau (高原性缺氧)
Altitude Atmosphere
PiO2
PAO2
SaO2
m
mmHg
mmHg
mmHg
%
0
1000
2000
3000
4000
5000
6000
7000
8000
760
680
600
530
460
405
366
310
270
159
140
125
110
98
85
74
65
56
105
90
70
62
50
45
40
35
30
95
94
92
90
85
75
70
60
50
Altitude 3700 m (Tibet Lhasa Potala Palace)
Altitude 1532 m (yellow mountain)
Altitude 8848 m (The Himalayas )
External respiratory dysfunction: respiratory hypoxia
(呼吸性缺氧)
Venous-to-arterial shunts:tetralogy of Fallot
法洛氏四联症(tetralogy of Fallot )
Characteristics of blood O2
PaO2 ↓
CaO2 ↓
SO2 ↓
A-VdO2
CO2max N
↓/ N
Cyanosis (紫绀):Cyanosis is a bluish or purplish tinge
to the skin and mucous membranes. Approximately over
5g/dL of unoxygenated hemoglobin in the capillaries
generates the dark blue color appreciated clinically as
cyanosis.
O2 diffusion in tissue
Atmosphere
Decreased PiO2
Ventilation & Diffusion
External respiratory dysfunction
Hypotonic hypoxia
Binding with Haemoglobin
Abnormality of HB
Transportation of gases
in blood
Venous-to-arterial shunts
Taking and utilization of
oxygen in tissue cells
Hemic
hypoxia
Hemic hypoxia 血液性缺氧
Hemic hypoxia refers to the altered affinity of
HB for oxygen or decrease in amount of HB in the
blood, also can be termed as isotonic hypoxemia
(等张性低氧血症)。
Etiology
Anemia:贫血性缺氧(anemic hypoxia)
Carbon monoxide poisoning :碳氧血红蛋白(HbCO)
Methemoglobinemia :HbFe3+OH;肠源性紫绀
Carbon monoxide poisoning
CO combines preferentially with hemoglobin to produce COHb,
displacing oxygen and reducing systemic arterial oxygen (O2)
content. CO binds reversibly to hemoglobin with an affinity 200230 times that of oxygen. Consequently, relatively minute
concentrations of the gas in the environment can result in toxic
concentrations in human blood. Possible mechanisms of toxicity
include:




Decrease in the oxygen carrying capacity of blood.
Alteration of the dissociation characteristics of oxyhemoglobin,
further decreasing oxygen delivery to the tissues.
Decrease in cellular respiration by binding with cytochrome a3.
Binding to myoglobin, potentially causing myocardial and skeletal
muscle dysfunction.
(2)一氧化碳中毒(Carbon monoxide poisoning)
吸入 CO
CO + Hb
2,3-DPG生成↓
碳氧血红蛋白(HbCO)
氧离曲线左移
Hb失去携O2能力
HbO2释放氧↓
CO + 1个Hb亚单位
组织缺氧
Hb产生变构
其余3个血红素结合的氧也不易释放
氧离曲线左移
※CO与Hb的亲和力比O2大210倍,当
吸入的气体内含有0.1%CO时,血液中
的血红蛋白可能有50%转为HbCO。
Four binding sites
Concentration
35 ppm
(0.0035%)
Symptoms
Headache and dizziness within six to eight hours of constant exposure
100 ppm
(0.01%)
Slight headache in two to three hours
200 ppm
(0.02%)
Slight headache within two to three hours; loss of judgment
400 ppm
(0.04%)
Frontal headache within one to two hours
800 ppm
(0.08%)
Dizziness, nausea, and convulsions within 45 min; insensible within 2
hours
1,600 ppm
(0.16%)
Headache, tachycardia, dizziness, and nausea within 20 min; death in
less than 2 hours
3,200 ppm
(0.32%)
Headache, dizziness and nausea in five to ten minutes. Death within 30
minutes.
6,400 ppm
(0.64%)
Headache and dizziness in one to two minutes. Convulsions,
respiratory arrest, and death in less than 20 minutes.
12,800 ppm
(1.28%)
Unconsciousness after 2-3 breaths. Death in less than three minutes
Concentration
0.1 ppm
Source
Natural atmosphere level
0.5 to 5 ppm
Average level in homes
5 to 15 ppm
Near properly adjusted gas stoves in homes
100 to 200 ppm Exhaust from automobiles in the Mexico City central area
5,000 ppm
Exhaust from a home wood fire
7,000 ppm
Undiluted warm car exhaust without a catalytic converter
Table . COHb Levels and Symptomatology
10%
Asymptomatic or may have headaches
20%
Dizzyness, nausea, and syncope
30%
Visual disturbances
40%
Confusion and syncope
50%
Seizures and coma
60%
Cardiopulmonary dysfunction and death
Methemoglobinemia, MHb
• Definition: Methemoglobinemia
is a disorder
characterized by the presence of a higher than normal
level of methemoglobin (metHb) in the blood, in which
the ferrous (2+) form of heme is oxidized to the ferric
form (3+) thus making the heme moiety unable to bind
oxygen.
In addition, the remaining monomers of ferrous heme
within a hemoglobin tetramer bind their oxygen more
tightly causing a left shift of the oxygen dissociation
curve and reduced oxygen delivery at the tissue level.
Causes
• Hereditary/Congenital:
Hemoglobin M
Cytochrome b5 reductase deficiency (NADH deficiency)—responsible
for 95% of MetHgb reduction,
NADPH deficiency of the HMP shunt
Acquired:
Multiple drugs and toxins including aniline dyes, benzene, chloroquine,
dapsone, local anesthetic agents, reglan, naphthalene, nitrites
(including NTG and NO), primaquine, phenazopyridine, and
sulfonamides.
Clinical presentation:
• Chronic methemoglobinemia: chronically elevated levels
of MetHgb often are asymptomatic or present with
headache, fatiguability, or “slate blue skin” complaints.
• Acquired (acute) methemoglobinemia: typically
symptomatic due to lack of compensatory mechanisms:
cyanosis, dyspnea, fatigue, lethargy, AMS, shock,
seizures and death. Severity depends on percent
methemoglobinemia. (1% is normal)
3-15% skin discoloration
20% cyanosis or asx
25-50%, HA, lightheaded, weak, chest pain, confusion
50-70% delirium, seizure, lactic acidosis
>70% arrhythmia and death.
Characteristics of blood O2
PaO2 N
CaO2 ↓ /N
SO2 N
A-VdO2
CO2max ↓ /N
↓
Color of skin
 Anemia:Pale
skin color

HbCO:Classic cherry red skin is rare (ie, "When
you're cherry red, you're dead"); pallor is present
more often.

HbFe3+OH:Bluish coloring, cyanosis
贫血的氧离曲线
70%
70%
20%
normal
methemoglobin concentration
Note the chocolate brown color of methemoglobinemia. This
dark hue imparts clinical cyanosis when methemoglobin levels are at
1.5 g/dL (approximately 10-15% methemoglobin concentration);
however, a level of 5 g/dL of deoxygenated blood is required for
similar effects. Therefore, when methemoglobin levels are relatively
low, cyanosis may be observed without cardiopulmonary symptoms.
Atmosphere
Decreased PiO2
Ventilation & Diffusion
External respiratory dysfunction
Hypotonic hypoxia
Binding with Haemoglobin
Abnormality of HB
Hemic hypoxia
Transportation of gases
in blood
Venous-to-arterial shunts
hypokinetic
Taking and utilization of
oxygen in tissue cells
Circulatory
hypoxia
Circulatory hypoxia 循环性缺氧
Circulatory hypoxia refers to inadequate blood
flow leads to inadequate oxygenation of the
tissues.
1.Tissue ischemia:shock, heart failure
2.Tissue congestion:venous embolism
Etiology
 Systemic:shock, heart failure
 Local:embolism, atherosclerosis
Characteristics of blood O2
PaO2 N
CaO2 N
SO2 N
A-VdO2 ↑
Color of skin

Tissue ischemia :pale

Tissue congestion :cyanosis
CO2max N
Atmosphere
Decreased PiO2
Ventilation & Diffusion
External respiratory dysfunction
Hypotonic hypoxia
Binding with Haemoglobin
Abnormality of HB
Hemic hypoxia
Transportation of gases
in blood
Venous-to-arterial shunts
hypokinetic
Taking and utilization of
oxygen in tissue cells
Dysfunction of O2 utilization
Circulatory hypoxia
Histogenous
hypoxia
Histogenous hypoxia 组织性缺氧
Histogenous hypoxia refers to the tissue cell
cannot make use of the O2 supplied to them.
Etiology
 Tissue poisoning:histotoxic hypoxia
cyanide, arsenide, sulphide
 Vitamin insufficiency:vitamin B1, B2, PP
 Mitochondrial damage:radiation, bacteria、uremia
Characteristics of blood O2
PaO2 N
CaO2 N
SO2 N
A-VdO2
↓
CO2max N
Color of skin

Deceptively healthy pink to red skin color
Functional and
Metabolic Changes
急性严重缺氧时机体变化以失代偿和损
伤为主;
轻度缺氧时机体或细胞以代偿性调节为
主。
慢性缺氧时机体的代偿反应和缺氧性损
伤并存。
Compensatory reaction
代偿性反应
Respiratory system
急性缺氧时最主要的代偿反应--
呼吸功能增强使肺通气量增加
PaO2<60mmHg(8kPa)
PaCO2 ↑
PaO2↑
刺激外周化学感受器
刺激中枢化学感受器
PAO2和PaO2↑
C.O和肺血流量↑
组织供氧↑
静脉回流↑
有利于氧的摄取和运输
窦神经、迷走神经
呼吸中枢(+)
呼吸加深加快
胸内负压↑
肺通气变化与缺氧持续时间的关系
呼吸性碱中毒
【早期】
高原地区
中枢化学感受器兴奋性↓
呼吸加深加快
肺通气量增加65%
呼吸加深加快
肺通气量增加5~7倍
【数日后】
高原地区
数日后
呼碱被纠正
中枢化学感受器(+)↑
【长期居住】
肺通气量接近正常(肺通气量增加15%)
外周化学感受器对缺氧的敏感性↓
机体对缺氧的耐受性↑
Circulatory system
(1)心输出量增加
交感N(+)
心率↑;心肌收缩性↑;静脉回流↑
C.O ↑
(2)肺血管收缩(Kv通道为主)
缺氧
Kv通道开放↓
K+外流↓
膜电位↑
平滑肌(+)↑
Ca2+内流↑
肺内合成释放缩血管物质大于扩血管物质
肺小动脉收缩
交感神经兴奋↑
(3)血液重分布
脑、心血管平滑肌以KCa 、KATP 通道为主。
(4)毛细血管增生
Hematologic system
1)红细胞增多
1)红细胞增多
急性缺氧
2)氧合血红蛋白解离曲线右移
脾脏、肝脏收缩,将储存血液释放入体循环,增加氧的摄
取和运输能力
缺氧时红细胞内2,3-DPG增多,
慢性缺氧 2,3-DPG增多使氧离曲线右移
血浆中ESF(EPO)增加,使红细胞数和Hb量明显增加
有利于HbO
2在组织部位释放出较多的氧
可增加血液的氧容量和氧含量
过度增加可使血粘度增加
当
paO2低于8kPa时,氧离曲线右移会明显影响肺部血液
对氧的摄取
2,3-DPG的生成与分解
Tissues and cells
 细胞内呼吸功能增强:线粒体数目,呼吸酶活性
 糖酵解增强
 肌红蛋白增加:与氧的亲和力增加
 低代谢状态
Hypoxia inducible factor-1(HIF-1)
VEGF, EPO, glycolysis enzymes
NATURE REVIEWS | Immunology volume 9 | September 2009
Hypoxia Injury
缺氧对机体的损伤性作用
Hypoxia / ischemia
Mitochondrion
↓Oxidative phosphorylation
↓ATP
↓Na pump
↑Influx of Ca2+,
H2O, and Na+
↑Anaerobic glycolysis
↓Glycogen
↓pH
Other effects
Detachment of
ribosome, etc.
↑Efflux of K+
ER swelling
Cellular swelling
Loss of microvilli
Blebs
Clumping
of nuclear
chromatin
↓Protein
synthesis
Lipid
deposition
Tissues and cells
缺氧引起机体功能和代谢障碍主要通过线粒
体途径引起能量代谢障碍导致细胞损伤
1)线粒体的变化
严重缺氧
线粒体损伤
ATP↓↓
缺氧使线粒体损伤的原因
供氧障碍:损伤线粒体的功能和结构
线粒体用氧障碍:某些理化和生物因素可损伤线粒体
各种因素使得线粒体呼吸链中断
2)细胞膜变化
细胞缺氧
膜对离子的
通透性增高
ATP
消耗增多
Na+内流
钠泵功能障碍
K+外流
ATP减少
Ca2+内流
膜电位降低
细胞水肿
线粒体肿胀
溶酶体肿胀
各种酶代谢障碍
合成代谢障碍
加重能量代谢障碍
进入线粒体,使其功能发生障碍
和调钙蛋白激活磷脂酶,使膜磷脂分解
使自由基生成增加
3)溶酶体变化
溶酶体肿胀、破裂和释出大量溶酶体酶,引起细
胞及其周围组织的溶解、坏死。
Central nerve system
大脑是对缺氧最为敏感的器官,
缺氧最易使CNS功能发生障碍。
缺氧时CNS功能障碍的主要原因和机制:
神经细胞膜电位降低、神经介质合成减少、
ATP生成不足、酸中毒、细胞水肿、
细胞内游离Ca2+增多、溶酶体酶释放、
神经细胞的结构破坏等
急性缺氧、慢性缺氧、严重缺氧(PaO2<28mmHg)
可以产生严重程度不同的CNS功能障碍
高原脑水肿:重度高原反应并发症,CNS受损,颅内高压
机制 :① 脑细胞水肿
② 血脑屏障功能受损
③ 脑静脉内血栓形成
Pathophysiology of hypoxic-ischemic brain injury in the developing brain. During the initial
phase of energy failure, glutamate mediated excitotoxicity and Na+/K+ ATPase failure lead to
necrotic cell death. After transient recovery of cerebral energy metabolism, a secondary
phase of apoptotic neuronal death occurs. ROS = reactive oxygen species
Summary of potential neuroprotective strategies
Respiratory system
高原肺水肿(high altitude pulmonary edema, HAPE)
进入4000m高原后1~4d内出现
发病率:5.7%~17.7%
临床表现:胸闷,咳嗽,发绀,呼吸困难,血性泡沫痰
体征:肺部湿罗音
发病机制
 外周血管收缩,回心血量增加;
 缺氧性肺血管收缩,肺动脉高压;
 肺动脉收缩不均一引起超灌注→非炎性漏出;
 肺毛细血管壁通透性增加。
中枢性呼吸衰竭
PaO2<30mmHg
抑制呼吸中枢
Circulatory system
心肌的收缩与舒张功能降低:心肌缺氧和酸中毒
心律失常:窦性心动过缓、引起期前收缩和各种心律失常,
包括引起心室纤维颤动致死。
静脉回流减少:严重、持久的缺氧使得外周血管扩张,血
液淤滞。
肺动脉高压:使得右室后负荷增加,引起右心室肥大代偿、
失代偿、心力衰竭。
Hematologic system
 血液粘滞度增高
 外周阻力增大
 心脏后负荷增高
Oxygen Treatment
吸氧
 对低张性缺氧最有效
 提高血液性缺氧和循环性缺氧患者血液物理
溶解的氧
 组织性缺氧治疗关键是解除呼吸链酶的抑制
Oxygen Intoxication
由于吸入气体氧分压过高,或长时间吸入高浓度氧,
使患者出现听觉或视觉障碍、恶心、抽搐、晕厥等神经症状,
部分患者出现溶血反应,或因引起严重呼吸衰竭致死,这样
一类临床综合征,称为氧中毒。
基本机制:氧中毒时可生大量氧自由基和活
性氧,导致组织细胞损伤。
肺型氧中毒:
吸入一个大气压左右的氧达8h时可发生肺型氧中毒。
脑型氧中毒:
吸入2~3个大气压以上的氧,可在短时内(6个大
气压氧吸入数分钟;4个大气压氧吸入数十分钟)引起脑
型氧中毒。
组织部位氧的弥散及其影响因素
物理溶解的氧
HbO2
血液
组织液
细胞内液
毛细血管动脉段PaO2(1)
100mmHg
血
流
速
度
(
2
)
组织 PtO2 30~40mmHg(3)
细胞(线粒体) ~5mmHg
弥散距离(4)
(1) PaO2降低,组织部位O2弥散速度,单位时间的O2弥散量减少
(2) 血流速度减慢,血液中氧释放增多,但单位时间中组织获O2减少
(3) 组织氧分压降低,组织部位O2弥散速度,组织获得O2增多;反之亦然
(4) 弥散距离加大,单位时间中细胞获得O2可减少
返回
正常
100
20
20
血液性缺氧
(贫血)
80
15
氧
饱
和
度
%
60
10
血
氧
含
量
ml%
40
5
20
15
10
100
氧
饱
和
度
%
80
60
血
氧
含
量
5
ml%
40
20
0
0
20
40
60
80
氧分压(mmHg)
100
0
0
20
40
60
80
100
氧分压(mmHg)
返回
2,3-DPG的生成与分解
葡萄糖
6-磷酸葡萄糖
6-磷酸果糖
磷酸果糖激酶
1,6-二磷酸果糖
磷酸二羟丙酮
3-磷酸甘油醛
1,3-二磷酸甘油酸
乳酸
丙酮酸
2,3-DPG
DPGP
2-磷酸烯醇式丙酮酸
3-磷酸甘油酸
2-磷酸甘油酸
返回
ISCHAEMIC AND HYPOXIC INJURY
• cellular response to ischaemia:
–
–
–
–
cesstion of blood flow -->
lack of oxygen and glucose -->
fall in mitochondrial ATP production -->
depletion of cellular ATP -->
•
•
•
•
•
failure of membrane Na+/K+ ATPase pump
– sodium and water enter cell -->
– swelling of endoplasmic reticulum
failure of membrane calcium pumps -->
– free calcium enters cytoplasm
– activates phospholipases
– membrane damage -->
– massive entry of calcium and water into cell and liberation of lysosomal enzymes
failure of protein synthesis
mitochondrial swelling
switch to anaerobic metabolism -->
– fall in intracellular pH --> activation of lysosomal enzymes because these have been liberated
(see 2. failure of membrane calcium pumps above) --> necrosis
• summary: hypoxia causes damage because ATP is not produced
and therefore membrane pumps cannot work, in particular, cytosolic
free calcium is a potent destructive agent