Document 7541780
Download
Report
Transcript Document 7541780
第四章 相關分析 (correlation
analysis)
4-1
相關分析
4-2
Pearson 積差相關係數
4-3
相關係數
4-4
點二系列相關
4-5
Spearman 等級相關
4-6
淨相關
4-7
部份相關
4-1 相關分析
相關分析探討的是兩個變數之間的關聯程度 (degree of association), 若
是兩個變數是名目變數, 請使用X2卡方檢定, 這裏使用的是區間, 比率或順序的
計量變數,在統計上, 使用的是兩個變數關連程度的統計量, 例如, 常用的
Pearson 相關分析的Pearson相關係數, 就是用來表示兩個變數之間的關連程
度
相關係數(correlation coefficient) 是本章最重要的判讀依據, 有大小和方
向兩種特性, 我們分別介紹如下:
相關係數的大小(magnitude):表示兩個變數之間, 相關程度的強弱, 相關係
數的絶對值愈大, 代表相關程度愈強, 相反的, 相關係數的絶對值愈小, 代表
相關程度愈弱, 若是相關係數的值為0, 代表零相關, 也就是没有相關。
相關係數的方向(direction):表示兩個變數之間, 是正相關, 還是負相關, 相
關係數是正值, 代表兩個變數中的一個變數增加時, 另一個變數也會增加,
相關係數是負值, 代表兩個變數中的一個變數增加時, 另一個變數就會減少,
反之亦然。
一般常用的相關分析有Pearson積差相關係數, 相關係數, 點二系列相關,
Spearman等級相關, 淨相關, 和部份相關, (複相關大多都使用迴歸,請參考迴
歸分析), 相關的內容我們分別介紹如後。
4-2 Pearson積差相關係數
Pearson積差相關係數(Product-Moment Correlation Coefficient)
是適用於2個變數都是連續變數, 可以是interval scale (區間變數)或
ratio scale(比率變數), 相關係數的計算如下:
rXY的圖示
rXY樣本的相關係數是一次方的函數, 可以用散佈圖來查看。
rXY為正相關的圖如下:
rXY為負相關的圖如下:
y
y
x
x
rXY值的判別
在判定rXY值時, 一般常用三級制, 絶對值大於等於0.8時, 為高
度相關, 大於等於0.4時, 為中度相關, 小於0.4時, 為低度相關
研究假設如下:
虛無假設 H0: = 0, 兩個變數之間無相關
對立假設 H1: 0, 兩個變數之間有相關
範例:
Trust有用性(使用資安產品可以加速工作時間)及Risk易用性
(資安產品很容易使用)之間是否有相關存在。(題項:Trust、Risk)
假設: H 0 : 0
H1 : 0
操作步驟如下:
開啟範例 correlation.sav, 出現圖如下:
1.
2.
3.
4.
5.
開啟範例 correlation.sav
按 Analyze Correlate Bivariate
在 Bivariate Correlations 視窗,選取 信任 Trust和風險 Risk 變數
選取 信任 Trust和風險 Risk 變數,按 〉,選取 Pearson (預設)
按 OK,出現報表結果,如下圖:
報表分析如下:
Correlations
Correlations
** Correlation is significant at the 0.01 level (2-tailed).
說明:p-value= .001 < .05,因此拒絕 H 0 : 0 ,表示 Trust 及 Risk 間
具有顯著相關,相關係數為0.278,屬低度相關。
4-3 相關係數
相關係數(Phi correlation coefficient) 適用於二個變數都是二
分名義變數 (nominal-dichotomous variable), 也就是都是二分類的
變數。
例如:性別, 民主和共產國家…等等。
相關係數值為卡方X2的另一種轉換值, 由於X2容易受到, 樣本
數大小的影響, 於是將X2轉換成0 ~1之間, 0代表無相關, 1化表高度
相關, 值的計算方式如下:
=
範例:
x2
N
學歷與職位間有無關係,題項:grade(學歷)、position (職位)
說明:
H0 : 0
H1 : 0
H0無關係 ,H1有關係
操作步驟如下:
1.
2.
3.
4.
5.
6.
開啟範例 correlation.sav, 出現圖如下:
按 Descriptive Statistics Crosstabs
在 Crosstabs 視窗,選 grade (學歷)到 Row(s) ,選 position (職位)到 Column(s)
按 Statistics,選 Chi-square,Phi and Cramer’s V
按 Continue, 回到 Crosstabs 視窗
按 OK,出現報表結果,如下圖 :
報表分析如下:
Crosstabs
Case Processing Summary
學歷 * 職位 Crosstabulation
Count
Chi-Square Tests
a 15 cells (75.0%) have expected count less than 5. The minimum
expected count is .03.
Symmetric Measures
a Not assuming the null hypothesis.
b Using the asymptotic standard error assuming the null hypothesis.
說明:p-vlaue= .000< .05,故學歷與職位間有顯著相關。
4-4 點二系列相關
點二系列相關(Point-biserial Correlation) 適用於一個變數為二分名義變數,
另一個為連續變數 (區間變數或比率變數), 點二系列的相關係數計算如下:
注意:在SPSS軟體中, 没有處理點二系列相關係數的選項, 由於計算點二系列的
相關係數值會與Pearson相關係數值一樣, 所以, 在處理點二系列相關問題時, 都
會採用Pearson相關係數的步驟來計算。
4-5 Spearman等級相關
Spearman等級相關係數 (Rank Order Correlation Coefficient) 適用於兩個
變數皆為順序尺度, 其目的是在算出兩組等級之間一致的程度, 例如, 可以用在
兩個人對於N台筆記型電腦進行印象分數等級的評定或則是1個人對於N台筆記
型電腦進行前後二次印象分數等級的評定。
Spearman等級相關係數的計算如下:
範例:
某單位顧問對於廠商同樣的產品,前後加以評分給等第,我們想知道前後
加以評分給等第之間是否有相關存在,題項:Score1(分數1)、Score2(分數2)
說明:
H 0 : rs 0
H 1 : rs 0
操作步驟如下:
1. 開啟範例 correlation.sav
2. 按 Analyze Correlate Bivariate
3. 在Bivariate Correlations 視窗,將 score1 (分數1)和 score2 (分數2)選入
variables,選取 Spearman
4. 按OK,出現報表結果
輸出報表結果如下:
Nonparametric Correlations
Correlations
** Correlation is significant at the 0.01 level (2-tailed).
說明: p-value= .000< .05,拒絕H0,表示前後加以評分給等第之間的結
果相近,相關係數達 0.766 ,屬於高度正相關。
4-6 淨相關
淨相關(Partial Correlation)又被稱為偏相關, 在前面Pearson相關
係數討論中, 我們是直接探討二個變數之間的相關程度, 但是, 如果這
二個變數同時與第三個變數有關係時, 也就是說, 這二個變數可能會
受到第三個變數的干擾, 這時, 我們想了解原先二個變數的相關是否
是由第三個變數所造成的影響, 就可以將第三個變數的影響效果控制
住, 也就是計算與第三個變數有相關部份排除後, 原先二個變數的純
淨相關
淨相關係數的展示式:例如有X1, X2兩變數, 第三變數為X3
X1和 X2相關係數 = r12
X1和 X3相關係數 = r13
X2和 X3相關係數 = r23
X1和 X2相關係數並排除r13和 r23時的淨相關係數= r12.3
r12.3=
r12 r13r23
1 r132 1 r232
研究假設:
虛無假設H0:r= 0 兩者無淨相關
對立假設H1:r 0 兩者有淨相關
範例:
易用性與傾向使用均與有用性成正相關,計算易用性與傾向使
用的淨相關。(題項:PU、PEOU、ITU)
說明:
H0 : r 0
H1 : r 0
H0無關係,H1有關係
操作步驟如下:
1. 開啟範例 correlation.sav
2. 按 Analyze Correlate Partial
3. 在 Partial Correlations 視窗,將 PEOU (易用性)和
ITU(傾向使用)選入 variables,將 PU(有用性)選入
Controlling for
4. 按 Options, 選取 Means and standard deviation 和
Zero-order correlations
5. 按 Continue,回到 Partial Correlations 視窗
6. 按OK,出現報表結果
輸出報表結果如下:
Partial Corr
Descriptive Statistics
Correlations
a Cells contain zero-order (Pearson) correlations.
說明:
1.
r( PEOU )( ITU ) = .394,p-value=.000<.05,因此拒絕H0 :r=0,表示
未排除 PU前,PEOU與ITU具顯著相關。
2.
r( PEOU )( ITU )
=.251,p-value=.002<.05,因此拒絕H0 :r=0 ,表示
排除PU後,PEOU與ITU具顯著相關。
結論:
PU(易用性)和PEOU(傾向使用) 兩者有淨相關值為
r( PEOU )( ITU )
=.251 。
4-7 部份相關
部份相關(part correlation) 又被稱為半淨相關 (semipartial correlation ),
原因是部份相關在處理時, 是處理淨相關的部份, 淨相關是X1和 X2變數, 排除第
三變數 X3的影響後, 所得到X1和 X2的淨相關, 而部份相關則是在處理排除效果
時, 僅處理第三變數X3與X1或 X2其中一個變數相關, 得到的結果稱為部份相關
部份相關的表示式:
r12 r13r23
r
1(2.3)=
r
r
r
r
(2.3):X2中排除X3的影響力
2
1 r23
X2的相關係數
13:X1和X3的相關係數
23:X2和X3的相關係數
12:X1和
注意:請比較淨相關和部份相關的表示式, 會發覺只有分母部份不相同, 這意味
著, 淨相關和部份相關的值不會一樣, 一般淨相關的絶對值會大於部份相關的絶
對值。
範例:易用性與傾向使用均與有用性成正相關,計算易用性與傾向使用的淨相
關。(題項:PU、PEOU、ITU)
H0 : r 0
說明:
H0無關係 ,H1有關係
H1 : r 0
操作步驟如下:
1. 開啟範例 correlation.sav
2. 按 Analyze Regression Linear
3. 在 Linear Regression 視窗,將 ITU(傾向使用)選入
Dependent,將PU(有用性)和 PEOU (易用性) 選入
independent
4. 按 Statistics,選取 Estimates,Model fit 和 Part and
partial correlations
5. 按Continue,回到 Linear Regression 視窗
6. 按OK,出現報表結果
報表分析結果如下:
Regression
Variables Entered/Removed(b)
a All requested variables entered.
b Dependent Variable: 傾向使用
Model Summary
a Predictors: (Constant), 易用性, 有用性
ANOVA(b)
a Predictors: (Constant), 易用性, 有用性
b Dependent Variable: 傾向使用
Coefficients(a)
a Dependent Variable: 傾向使用
說明:由上表知,有用性與傾向使用的淨相關為.398,部份相關為.366。易用性與傾向
使用的淨相關為.251,部份相關為.219。