Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. Authors
Download ReportTranscript Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. Authors
Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. Authors C. Rivetta– Fermilab. F. Arteche , F. Szoncso, - CERN OUTLINE 1- Introduction 2-Noise considerations 3-Thermal noise 4-Multi-transmission line model 5-Surface transfer impedance 6-Common mode rejection –Examples 7-External electromagnetic field –Examples Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 2 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 1.INTRODUCTION The goal of this study is to establish the susceptibility level to electromagnetic noise of the HF CMS calorimeter. Characterise the influence of topology and parameters on the overall FEE noise – Thermal Noise – Conductive Common Mode (CM) Noise – Electromagnetic Interference (EMI) Generate a software tool to assist: – The analysis of cable quality. – Analysis of common mode effects on sensitive equipment. Conducting & radiated coupling through cables. Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 3 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 1.INTRODUCTION Dy7 Dy8 QIE sig. Anode PMT Cc HV QIE ref. Rgnd PMTs / QIE distance is 4 meters. QIE:Sample Charge integrator with ADC QIE is a differential current mode amplifier. QIE input impedance 50 or 93 Ohms. Asymmetric dynamic range. Gain: 1fC/LSB Sampling freq.: 40MHz. Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 4 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 2. NOISE CONSIDERATIONS Low level signal processing of FEE is defined by the noise n(t ) s (t ) Noise at output is composed by several factors na (t ) nth(t ) nCM (t ) nEMI (t ) ..... –Power Spectrum nth(t) Nth2 ( ) Tv( ) .en 2 ( ) Ti ( ) .in 2 ( ) 2 2 nCM(t) and nEMI(t) in frequency domain Ncm( ) TCM ( ).TAMP( ).VCM ( ) NEMI ( ) (TEMIH ( ).H ( ) TEMIE ( ).E ( )).TAMP( ) •Criteria generally used na 2 nth 2 ; Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 5 / 20 (nCM nEMI ... ) 2 0 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 3. THERMAL NOISE 2 n e G f in2 va Zo 1 va (t ) g (t ) * i (t ) i (t ) .dt C 0 1 e s. G( s) ( I ( s) I ( s)) va ( s) TAMP( s) ( I ( s) I ( s)) ; s C I ( ); I ( ) Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 6 / 20 en( ) in( ).Zin ( Zin Zo) ( Zin Zo) 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 3. THERMAL NOISE ENC G 2 en2 w 2 i if L n 4 C 2 Z 0 2 2 2 nth 2 2 G en in2 L in2 . if L w 2.v C 2 Z 0 2 2 2 ENC 2 Cable No Yes Yes L Cables with low impedance increse the thermal noise There exists a critical length for the cable where the noise does not increase. nth 2 G C . / 2. 2 Length 5 mts 5 mts Zo 50 93 ENC- QIE 3500e11000e7000e- Measured by T. Zimmermann, Fermilab Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 7 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 3. MULTI-CONDUCTOR TRANSMISSION LINE MODEL TEM mode R,L,C,G line parameter matrices per unit length V,I voltage & currents vectors Solution: – Terminal Boundary conditions – Frequency domain – Time domain V ( z, t ) R I ( z, t ) L I ( z, t ) z t I ( z , t ) GV ( z , t ) C V ( z , t ) z t V2 ( z Dz , t ) I1 ( z , t ) V1 ( z , t ) I1 ( z Dz , t ) I2 ( z , t ) I 2 ( z Dz , t ) I3 ( z , t ) I 3 ( z Dz , t ) I 3 ( z Dz , t ) V2 ( z , t ) .. .. V2 ( z , t ) . V3 ( z Dz , t ) I 3 ( z Dz , t ) . I n ( z Dz , t ) In ( z , t ) Vn ( z , t ) Vn ( z Dz , t ) I 3 ( z Dz , t ) Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 8 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 4. SURFACE TRANSFER IMPEDANCE Vt Zt(w)=Vt(w)/I(w) I Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 9 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 4. SURFACE TRANSFER IMPEDANCE Inner System I2 I0* Zt2 I1 R2 L2 R1 L1 I0* Zt1 V2 C20 V1 Inner Conductors C12 U0* Yt2 U0* Yt1 C10 Shield I0 RS LS V0 CS0 Outer System Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 10 / 20 Shield Environment 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 4. SURFACE TRANSFER IMPEDANCE Zt Zd ( ) j.( Mh Mb ) Zd (w ) Diffusion coupling due to skin effect (LF) – Mh - Aperture coupling (HF) – Mb - Braid inductance (HF) Define the amount of noise coupled to the internal conductors It is a characteristic parameter of shielding cable V ( z , t ) R I ( z, t ) L I ( z , t ) Zt.Io( z , t ) z t I ( z , t ) GV ( z, t ) C V ( z, t ) Yt .Vo( z, t ) z t Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 11 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 4. COMMON MODE REJECTION PMT QIE sig. Cp Cc QIE ref. Rgnd Vcm Rgnd : 100ohms, 1Kohms, 10Kohms Cp -Parasitic capacitance of PMT, board and connections Cc- Compensation capacitance Coaxial cable RG-58 Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 12 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 4. COMMON MODE REJECTION Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 13 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 4. COMMON MODE REJECTION Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 14 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 4. COMMON MODE REJECTION Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 15 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 5. EXTERNAL ELECTROMAGNETIC FIELD External magnetic field – Voltage generator (VF) External electric field – Current generator (IF) VF, IF are dependent of system geometry. Applicable for near fields & far fields -weak coupling. V z , t L I z , t R I z , t VF z , t z t Example: I z, t C V z, t G V z, t I F z, t z t Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 16 / 20 – Far-field, E=100uV/m (EN 55022 A) 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 5. EXTERNAL ELECTROMAGNETIC FIELD Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 17 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 5. EXTERNAL ELECTROMAGNETIC FIELD Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 18 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 5. FUTURE WORKS Final conclusions about sensitivity to CM and EM interference Extend the analysis to different HF cable prototypes. Include studies of near fields – Electric field – Magnetic field Extend to time domain solutions – Transient effects Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 19 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002 5. CONCLUSIONS The analysis allows to quantify effects of parasitic elements and unbalances on HF configuration. The system is very sensitive to parasitic elements that unbalance the differential topology – Proper selection of final cable – Influence of Rgnd is important at low frequency Noise Immunity Analysis of Forward Hadron Calorimeter Front-end Electronics. 20 / 20 8th Workshop on Electronics for LHC Experiments COLMAR - France, 9-13 September 2002