Front-end Electronics for the LHCb Preshower 1

Download Report

Transcript Front-end Electronics for the LHCb Preshower 1

Front-end Electronics for the LHCb
Preshower
Rémi CORNAT, Gérard BOHNER, Olivier DESCHAMPS, Jacques
LECOQ, Pascal PERRET
LPC Clermont-Ferrand
R. CORNAT - LPC - LECC Colmar - septembre 2002
1
Plan

Introduction

Front-end Electronics


Very front end

Front end
Prototypes
R. CORNAT - LPC - LECC Colmar - septembre 2002
2
The Preshower

Located upstream from ECAL

~6000 cells (same as ECAL)

12 mm thick lead plane followed by scintillator pads
R. CORNAT - LPC - LECC Colmar - septembre 2002
3
Raw Signal

We mostly have MIPs

1 MIP signal is very erratic

Longer than 25 ns


~85 % during 1st period


Dynamic range from 0 to 100 MIP

Trigger at 5 MIP (5 % accuracy)

10 bits
R. CORNAT - LPC - LECC Colmar - septembre 2002
4
Very Front-end Electronics

Common mode to differential mode conversion

Signal integration

Within 25 ns periods

Without dead-time

16 half-channels per chip

2 V amplitude
R. CORNAT - LPC - LECC Colmar - septembre 2002
5
Cable adaptation

Standard CAT5+ Ethernet cable


No individual but common shielding
Both sides adaptation

Pole-zero correction

No significant crosstalk

Negligible reflected signal after 20 m long
R. CORNAT - LPC - LECC Colmar - septembre 2002
6
Front-end Electronics


Mixed part

Signal reception

Levels adaptation

Digitisation
Digital processing

Physics data

Trigger data : linked to SPD and ECAL
R. CORNAT - LPC - LECC Colmar - septembre 2002
7
FEE : Mixed part

Everything in differential mode from VFE to digitisation

Cable adaptation

Electrical levels matching


From 1 V positive differential, -0.8 V CM to 1V bipolar differential,
0.5 V CM

Op. Amp. AD8138 or AD8132
50 mV differential pedestal


To cancel VFE offset
Low pass filter

Noise reduction
R. CORNAT - LPC - LECC Colmar - septembre 2002
8
FEE : Mixed part

Digitisation : AD9203

10 bits, 40 MHz, 75 mW,
differential inputs

Package size fits requirements
(64 channels on the FE board)

Vref feed-back from ADC
to Op. Amp.

RJ 45 connector
R. CORNAT - LPC - LECC Colmar - septembre 2002
9
FEE : Mixed part
R. CORNAT - LPC - LECC Colmar - septembre 2002
10
FEE : Mixed part

1 cm x 4 cm hierarchical element


64 channels fit on a 9U board
Noise : from 0.8 mV to 0.4 mV
due to layout optimisation

Ground plane

Critical wires routing

LVDS Clock
R. CORNAT - LPC - LECC Colmar - septembre 2002
11
Digital Processing

Pedestal

Gain

Pile-up

PMT signal longer than 25 ns

Coding (float, 8b)

Parameters per half channel

128 half-channels per board
R. CORNAT - LPC - LECC Colmar - septembre 2002
12
Trigger data

SPD data


64 bits per FE board
Preshower : 1 bit per cell

Threshold on PS processed data
R. CORNAT - LPC - LECC Colmar - septembre 2002
13
Trigger functions

Trigger data = 1b (threshold)

SPD data processing = count # hits in a 64 b data
block


FPGA : 1 clk cycle
Neighbourhood search

Dedicated prototype, tested and validated
R. CORNAT - LPC - LECC Colmar - septembre 2002
14
Trigger functions

SPD data synchronization

Time alignment with respect to PS data

Multiplicity calculation on SPD data

Neighbours fetch

2x2 algorithm

1 address per ECAL FE
board (half PS FE board)

Send only useful data to
ECAL validation board
R. CORNAT - LPC - LECC Colmar - septembre 2002
15
Neighbours

Process applied on both SPD and PS data

Data multiplexed to outputs according to the address


The structure for 1 half-board fits into an EPM3256

tp@->out < 20 ns

Low level vhdl model written

Prototype tested
Will be fitted into ACTEL fpga
R. CORNAT - LPC - LECC Colmar - septembre 2002
16
SPD

SPD data synchronization


Variable length pipe-line
Multiplicity calculation on SPD data

Count # hits in a 64 bits data block

Low level VHDL model written

FPGA : one 40 MHz clock cycle (Altera ACEX)
R. CORNAT - LPC - LECC Colmar - septembre 2002
17
FE boards synchronization

Bordering cells data transmitted between PS FE
boards

Latency for neighbours transmission depends on
data source


Local board

N, E board

Corner board
Pipe-line stages added to compensate
R. CORNAT - LPC - LECC Colmar - septembre 2002
18
FPGA based prototype

16 channels = 2 VFE chips

No TTC, no ECS

Additional DAQ system



FPGA internal memory
VME
Was used for test beam
with PS detector and VFE
chip prototypes
R. CORNAT - LPC - LECC Colmar - septembre 2002
19
FPGA based prototype

DAQ channel : L0 pipe-line + RAM

Up to 1024 samples per run (internal memory
limitation)

Single and temporal modes

Allows to acquire up to 32 successive samples per trigger

Many process and acquisition parameters

C++ software + ROOT graphical interface

LabView version for debugging purpose
R. CORNAT - LPC - LECC Colmar - septembre 2002
20
Graphical interface

Linux

Statistical
analysis

Can manage
many boards
R. CORNAT - LPC - LECC Colmar - septembre 2002
21
ASIC prototype


4 channels (design is pad limited)
AMS 0.35 mm


9 mm2
CQFP100 package
220 configuration bits through
a serial interface
 Parity check and triple voting on configuration data
 Will be tested soon

R. CORNAT - LPC - LECC Colmar - septembre 2002
22
Approximate cost

4 channels = 1 ACEX1K or 1 9mm2 ASIC or ½ ACTEL SX32

32 cm in height for 64 channels
Technology
ACEX1K100
ASIC 0.35 mm
ACTEL 54SX32
Ch. #, package
4 (6), QFP208
4, QFP100
2, QFP208
Cost/channel
10 EUR (/1000) + ECS
12 EUR (/2000) + test
18 EUR (/1000) + prog&test

Foundry and design delays  subcontracted ACTEL prog.

ASIC meets available space constraints on the board
R. CORNAT - LPC - LECC Colmar - septembre 2002
23
Conclusion

VFE + FE validated (test beam)


Low noise for the analogue part
(Radiation and) surface use constraints

Best candidate : ASIC

Prototype board used for MAPMT characterization

Final board

Collaboration with LAL (Orsay) : DAQ, ECS, TTC parts
R. CORNAT - LPC - LECC Colmar - septembre 2002
24