New quadric metric for simplifying meshes with appearance attributes Hugues Hoppe Microsoft Research IEEE Visualization 1999
Download ReportTranscript New quadric metric for simplifying meshes with appearance attributes Hugues Hoppe Microsoft Research IEEE Visualization 1999
New quadric metric for simplifying meshes with appearance attributes Hugues Hoppe Microsoft Research IEEE Visualization 1999 Triangle meshes Mesh V F Vertex 1 x1 y1 z1 Vertex 2 x2 y2 z2 … Face 1 2 3 Face 3 2 4 Face 4 2 7 … - geometry p R3 - attributes s Rm normals, colors, texture coords, ... Mesh simplification 43,000 faces 2,000 1,000 complex mesh, expensive 43 faces Edge collapse v1 v v2 Selection? Previous selection techniques Heuristics (edge lengths, …) Residuals at sample points [Hoppe et al 1993], [Kobbelt et al 1998] Tolerance tracking [Gueziec 1995], [Bajaj & Schikore 1996], [Cohen et al 1997] Quadric error metric (QEM) [Garland & Heckbert 1997,1998] very fast, reasonably accurate Review of QEM [Garland & Heckbert 1997] Minimize sum of squared distances to planes (illustration in 2D) Squared distance to plane is quadric Given f=(v1,v2,v3): v v3 n v1 v2 Qf(v) = (nTv + d)2 = vT(nnT)v + 2dnTv + d2 = vT(A)v + bT v + c = (A,b,c) 6 + 3 + 1 10 coefficients Initialization of quadrics For each vertex v in the original mesh: Qf Qf Qf Qf v Qf Qf Q (v ) Q (v ) v f f v [Garland & Heckbert 1997] Simplification using quadrics v1 v v2 Qv(v) = Qv1(v) + Qv2(v) = (A,b,c) vmin = minv Qv(v) = -A-1 b Prioritize edge collapses by Qv(vmin) QEM for attributes [Garland & Heckbert 1998] p in R3 position Projection in R3+m v=(p,s) s in Rm attributes (p3,s3) (p1,s1) v’=(p’,s’) Q(v) = | v – v’ |2 (p2,s2) not geometrically closest Resulting quadric p v R 3 m s T p Q(v ) s T A p b s p c s dense (3+m) x (3+m) matrix quadratic space Time&space complexity Example m [G&H98] geometry 0 10 + color 3 28 + normals 6 55 + texture coord. 8 78 In general m > 0 (4+m)(5+m)/2 Contribution: new quadric metric Projection in R3 ! v=(p,s) (p3,s3) (p1,s1) v’=(p’,s’) (p2,s2) Q = geometric error + attribute error = | p - p’ |2 + | s - s’ |2 Geometric error term Zero-extended version of [Garland & Heckbert 1997]: p Qp nnT 0 0 s 0 0 0 0 , 0 0 dn 0 , d2 0 New quadric metric (cont’d) v=(p,s) (p3,s3) (p1,s1) (p2,s2) (p’,s’) Q = geometric error + attribute error = | p - p’ |2 + | s - s’ |2 s’(p) is linear still quadratic Predicted attribute value s' j p gTj p d j , p R 3 positions on face T 1 T 2 T 3 T p p p n 1 s1, j 1 g j s2, j 1 s 3, j 0 d j 0 face normal attribute gradient attributes on face Attribute error term Qs j v s' j p s j g p d j s j 2 p Qs j g j gTj 0 T gj 0 T j 2 sj 0 gj 0 0 0 1 0 0 0 d j g j 0 0 2 , , d j d 0 j 0 0 New quadric m Q (v ) Qp v Qs j v j 1 nnT g j g Tj g1 gm dn d g j j j j T d1 2 2 g 1 , d d j , j I T d m gm m x m matrix is identity linear space Time&space complexity Example m [G&H98] New Q geometry 0 10 10 + color 3 28 23 + normals 6 55 35 + texture coord. 8 78 43 In general m > 0 (4+m)(5+m)/2 11+4m Advantages of new quadric Defined more intuitively Requires less storage (linear) Evaluates more quickly (sparse) Results in more accurate simplification Results: image mesh original (79,202 faces) simplified (1,000 faces) [G&H98] New quadric Other improvements Inspired by [Lindstrom & Turk 1998] (details in paper) Memoryless simplification Qv = Qv1 + Qv2 re-define Q Volume preservation linear constraint (Lagrange multiplier) Results: mesh with color original (135,000 faces) simplified (1,500 faces) [G&H98] New scheme Results: mesh with normals original (900,000 faces) simplified (10,000 faces) fuzzy sharp Q is just geometry Q includes normals Wedge attributes >1 attribute vector per vertex vertex wedge Qv(p, s1 , … , sk) Results: wedge attributes original (43,000 faces) simplified (5,000 faces) Results: radiosity solution original (300,000 faces) simplified (5,000 faces) Summary New quadric error metric Other improvements: more intuitive, efficient, and accurate memoryless simplification volume preservation Wedge-based quadrics