Intensity of Energy Use Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions Mark D.

Download Report

Transcript Intensity of Energy Use Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions Mark D.

Intensity of Energy Use
Topics
1 Global Perspective
2 China Situation
3 United States
4 California
5 Conclusions
Mark D. Levine
[email protected]
For Energy & Climate Mini-Workshop
Monday, 3 November 2008
Intensity of Energy Use
Definition
Reducing intensity of energy use includes:
• energy efficiency
• structural change in economy
(producing and consuming
less energy-intensive products)
• energy conservation
1 Global Perspective
Annual Global CO2 Emissions
全球二氧化碳年排放量
billion tonnes carbon dioxide
十
亿
吨
二
氧
化
碳
30
25
20
15
Other Global Emissions
其他国家排放量
10
China 中国
5
US 美国
0
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000 2005
Source: Historical 1950-2003 US and global emissions data from Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center; 2004-2006
US data from BP via Global Carbon Project. China 1950-2006 emissions data are derived from revised total energy consumption data
published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon coefficients by LBNL
数据来源: 1950-2003年美国和全球的年排放数据来自橡树岭国家实验室二氧化碳信息分析中心;2004-2006年美国排放数据来自BP石油公司全球碳研究项目;
1950-2006年中国的年排放数据是劳伦斯-伯克利国家实验室根据修正后的2007年中国统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定
的.
Between 1970 and 2004 global greenhouse gas
emissions increased by 70%.
Total GHG emissions
WEO ’07
base case
for 2030
has 55%
increase
from 2005
(increase of
25 Gt CO2
eq/yr)
60
55
Gt CO2
eq/yr
50
45
40
35
30
25
20
15
10
5
0
1970
1980
1990
2000 2004
IPCC (WGIII) Estimates of Economically Feasible
CO2eq/yr Reductions in 2030 by Sector
in 2030
6*
4*
4*
3*
3*
3*
Total reductions
Low: 13Gt/yr
High 24Gt/y
Constant
emissions
25Gt/yr
2*
* From “Design to Win (2007), a project of several foundations
led by the Hewlett Foundation
Annual Rate of Change in Energy/GDP for the World
IEA (Energy/Purchasing Power Parity) and EIA (Energy/Market Exchange Rate)
2%
- 1.3%
Average = - 0.7%
- 1.3%
1%
0%
-1%
-2%
-4%
note: Russia not included until 1992 in IEA data and 1993 in EIA data
2001
2000
1999
1998
1997
1996
1995
1994
1993
1992
1991
1990
1989
1988
1987
1986
EIA data
1984
1983
1982
1981
IEA data
1985
-3%
Strategic Considerations
• Two crucial immediate actions needed
– (1) energy efficiency, (2) land use, and (3) cost-effective low carbon (electricity)
supply
– Very aggressive RD&D, especially on zero-carbon electricity (including
electricity storage)
• Much stronger government policies needed
– Carbon tax (or cap and trade)
– Rigorous policies are needed for all end-use sectors
• Efficiency and fuel economy standards, building codes and retrofit requirements, and
expanded demand-side management (DSM)
– Few countries address industrial sector
• Beyond energy efficiency: conservation and structural change
–
–
–
Change production processes (e.g., cement)
Change industrial output and consumption patterns
Lifestyle change
2 United States
Energy Intensity in the United States 1949 - 2005
25.0
thousand Btu/$ (in $2000)
20.0
If intensity dropped at pre-1973 rate of 0.4%/year
15.0
Actual (2.1%/year)
10.0
5.0
if E/GDP had dropped only 0.4%/yr
Actual (E/GDP drops 2.1%/yr)
DivRev05 page 10
2005
2003
2001
1999
1997
1995
1993
1991
1989
1987
1985
1983
1981
1979
1977
1975
1973
1971
1969
1967
1965
1963
1961
1959
1957
1955
1953
1951
1949
0.0
1973
2005
United States Refrigerator Use v. Time
2,000
25
Average Energy Use or Price
1,600
20
1,400
1,200
$ 1,270
Refrigerator
Size (cubic ft)
15
1,000
800
10
600
Energy Use per Unit
(KWH/Year)
400
$ 462 5
Refrigerator Price
in 1983 $
200
0
1947
0
1952
1957
1962
1967
1972
1977
Source: David Goldstein
1982
1987
1992
1997
2002
Refrigerator volume (cubic feet)
1,800
United States Refrigerator Use (Actual) and
Estimated Household Standby Use v. Time
1800
Estimated Standby
Power (per house)
1600
1400
Refrigerator Use per
Unit
1978 Cal Standard
1200
1987 Cal Standard
1000
1980 Cal Standard
800
1990 Federal
Standard
600
400
1993 Federal
Standard
2001 Federal
Standard
200
2009
2007
2005
2003
2001
1999
1997
1995
1993
1991
1989
1987
1985
1983
1981
1979
1977
1975
1973
1971
1969
1967
1965
1963
1961
1959
1957
1955
1953
1951
1949
0
1947
Average Energy Use per Unit Sold (kWh per year)
2000
High #
is worst
DivRev05 page 14
High #
is worst
DivRev05 page 15
High #
is worst
Environmental Energy Technologies
11/7/2015 , p. 16
3 China
Energy & GDP Growth in China
中国的能源消费与国内生产总值(GDP)增长之间的关系
160
Primary Energy Use (EJ)
一
次
能
源
消
费
(
百
万
兆
焦
耳
)
中国的二氧化碳排放占世界总排放量的百分比(1950-2002)
140
Estimated energy use at
1980 GDP energy intensity
120
基于1980年国内生产总值能源
强度估计中国的能源消费
100
80
152 EJ
(official GDP)
152百万兆焦耳
(正式公布的国内
生产总值)
103 EJ
(revised GDP)
103百万兆焦耳
60
(修正的国内生
产总值)
40
20
Actual energy use
58 EJ (actual)
实际能源消费
58百万兆焦耳
(实际)
0
1950
1955
1960
1965
1970
1975
Source: China Energy Group, Lawrence Berkeley National Laboratory
数据来源:劳伦斯-伯克利国家实验室,中国能源与环境研究室
1980
1985
1990
1995
2000
Energy-conservation policies & measures
in Phase II
• Energy Management
— factory energy consumption
quotas
— factory energy conservation
monitoring
— efficient technology promotion
— close inefficient facilities
— controls on oil use
• Financial Incentives
— low interest rates for efficiency
project loans
— reduced taxes on efficient
product purchases
— incentives to develop new
efficient products
— monetary awards to efficient
enterprises
• RD&D
– funded strategic technology
development
– funded demonstration projects
• Information Services
– national information network
– national, local, and sectoral
efficiency technical service
centers
• Education & Training
– national, local, and sectoral
efficiency training centers
– Energy Conservation Week
– school curricula
Energy and GDP, Path to 2020
中国的能源消费与国内生产总值(至2020年)
2.4
2.1
36
energy target
Actual energy
能源目标
32
实际能源消费
28
24
1.8
GDP target
1.5
国
内
生
产
总
值
千
亿
国内生产总值目标
20
2000
年
人
民
币
元
1.2
0.9
Actual GDP
实际国内生产总值
16
12
0.6
8
0.3
4
0
0
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020
Source: NBS, China Statistical Yearbook, various years; China Statistical Abstract 2005; growth estimates extrapolated from mid-year production
data for 2005; targets announced by NDRC
数据来源:中国国家统计局,中国统计年鉴(各年);中国统计摘要(2005);2005年增长数据是基于2005年年中生产数据通过插值方法得到的;目标
基于国家发展与改革委员会公布的数据
GDP (trillion 2000 RMB)
)
Energy Consumed (billion tce)
2.7
(
能
源
消
费
(
十
亿
吨
标
准
煤
)
Annual CO2 Emissions: US & China
中美两国年二氧化碳排放比较
6,000
百
万
吨
二
氧
化
碳
5,000
US
4,000
美国
million tons carbon dioxide
3,000
China
2,000
中国
1,000
0
1980
1985
1990
1995
2000
2005
Source: US annual emissions amounts reported by US EIA in the 2006 Annual Energy Review and 2007 Flash Estimate; China emissions are derived from
revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients by
LBNL
数据来源: 美国的年排放数据来自美国能源部信息署2006年能源回顾和2007年初步估计;中国的年排放数据是由劳伦斯伯克利国家实验室根据修正后的2007年中国
统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定的.
Global, Chinese & U.S. Per-Capita Energy-Related CO2 Emissions – 1950-2004
1950-2004年全球、中国和美国的人均能源相关二氧化碳排放量
25
tons CO2/person
/
吨
二
氧
化
碳
人
20
US 美国
15
10
Global Average 全球平均
5
China 中国
0
1950
1956
1962
1968
1974
1980
1986
1992
1998
2004
Source: China emissions are derived from revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC
carbon emission coefficients by LBNL; China population data from NBS and US Census (for 1950-51); global and American emissions data from Oak
Ridge National Laboratory, Carbon Dioxide Information Analysis Center; global and American population data from US Census
数据来源:中国的年排放数据是劳伦斯伯克利国家实验室根据修正后的2007年中国统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定的.中国的人口数据
来自中国国家统计局(其中1950-51年数据来自美国统计局);全球和美国的年排放数据来自橡树岭国家实验室二氧化碳信息分析中心;全球和美国人口
数据来自美国统计局。
Coal Use & Energy-Related CO2
煤炭消费与能源相关二氧化碳排放
China’s Steel Production 1990 – 2007
China’s Cement Production 1990 – 2007
中国的水泥生产量(1990-2007年)
中国的钢铁生产量(1990-2007年)
500
1,400
1,200
400
1,000
300
800
200
600
400
100
0
1990
200
1995
2000
2005
0
1990
1995
2000
2005
Million Metric Tons 百万吨
Source: China Iron and Steel Association; Institute of Technical Information for the Building Materials Industry; U.S. Geological
Survey
数据来源:中国钢铁协会;建筑材料工业技术情报研究所;美国国家地质调查局
Cement Production Worldwide: 2007
世界水泥生产量2007
其他国家 Rest of World 26%
墨西哥 Mexico 2%
意大利 Italy 2%
土耳其 Turkey 2%
西班牙 Spain 2%
俄罗斯 Russia 2%
韩国
Rep of Korea 2%
日本 Japan 3%
United States 4%
(includes Puerto Rico)
美国(包括波多黎各)
中国
India 6%
印度
China
~50%
Source: U.S. Geological Survey 2008. Mineral Commodity Summaries: Cement; China National Bureau of Statistics, 2008
资料来源:美国地质调查局2008年。 矿产品摘要:水泥;中国国家统计局2008年数据。
Industrial Energy Intensities are Declining
工业能源强度在下降
/2000
千
克
标
准
煤
kgce/RMB (2000)
年
人
民
币
元
2.0
Smelting & rolling of ferrous metals
1.8
Petroleum, coke & nuclear
1.6
金属冶炼及压延加工
石油,焦炭与核电
Non-metal mineral products 非金属矿物制品
1.4
1.2
Chemicals
1.0
Non-ferrous metals
0.8
0.6
化工
Paper
有色金属
Coal
造纸
0.4
Electricity
0.2
0
1995
煤
Textiles
1996
1997
1998
电力
纺织
1999
Source: China Energy Group, Lawrence Berkeley National Laboratory
资料来源:劳伦斯-伯克利国家实验室, 中国能源与环境研究室
2000
2001
2002
2003
• China has mounted an aggressive set of
programs to reduce energy intensity by 20% from
2005 to 2010
• It is likely to achieve a 15% reduction in energy
intensity
• Because of large future CO2 emissions of China,
there is a strong case to be made for international
support for China to reduce growth of emissions
DivRev05 page 26
4 California
California
Per Capita Electricity Sales
(not including
self-generation)
Per Capita Electricity Sales (not including self-generation)
(kWh/person)
14,000
12,000
10,000
8,000
6,000
4,000
2,000
California
United States
2004
2002
2000
1998
1996
1994
1992
1990
1988
1986
1984
1982
1980
1978
1976
1974
1972
1970
1968
1966
1964
1962
1960
0
Annual Energy Savings from Efficiency Programs
and Standards
45000
--15% of
Annual Electricity Use in California in 2003
40000
35000
30000
GWh
25000
20000
15000
10000
5000
0
1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
Appliance Standards
CEC (2005)
Building Standards
Efficiency Programs
Annual Usage of Air Conditioning in New Homes in California
Annual drop averages 4% per year
3,000
Initial California Title 24
Building Standards
100%
California Title 20
Appliance Standards
1976-1982
2,000
Estimated Impact of
2006 SEER 12
Standards
1,500
1,000
33%
1992 Federal Appliance
Standard
500
Source: CEC Demand Analysis Office
2006
2004
2002
2000
1998
1996
1994
1992
1990
1988
1986
1984
1982
1980
1978
1976
1974
1972
0
1970
kWh/YEAR
2,500
Annual Spending on Electricity Energy
Efficiency (1976-2002)
CEC Staff Report “Proposed Energy Savings Goals for Energy Efficiency Programs in
California” (2003)
Dramatic Increase in CA Utility
DSM Program (2006-2008)
Projected Spending on Electrical Energy
Efficiency (2006-2008)
800,000
750,000
700,000
650,000
Historical Spending on Electrical Energy
Efficiency (1976-2002)
600,000
550,000
500,000
450,000
400,000
350,000
300,000
250,000
200,000
150,000
100,000
50,000
0
2006
2007
Program Years
CEC Staff Report “Proposed Energy Savings Goals for Energy Efficiency Programs in California” (2003)
DivRev05 page 33
2008
Projected Impact of EE programs in reducing utility
load growth (2004-2013)
Annual Energy Load Growth (%)
4%
Total Energy Requirements
Adjusted Forecast (net of incremental program effects)
3%
2%
1%
•
•
SDG&E
SCE
PG&E
PSE
PGE
PacifiCorp
NWE
Idaho Power
BC Hydro
Avista
0%
Utilities’ forecasted load growth without energy efficiency ranges from 1.1% to 2.4% annually
The three CA utilities expect to reduce electricity growth to <0.5%/year (by >75% from base case expectations) over
coming 10 years!
5 Observations
and Conclusions
Greatest Needs to Reduce Energy Intensity
• What we can’t do well enough = need for RD&D
− Near zero-energy commercial buildings
− Electricity storage, especially batteries for vehicles
− Industrial process and product substitution (including
“dematerialization”)
− Changes in behavior and lifestyle
• U.S. Policy
− More rigorous standards and codes for buildings,
industry, and automobiles
− Transfer DSM capabilities among utilities
− Open discussion of cap and trade vs. carbon tax
• International, especially China and India
− Phase out CDM – too expensive and not effective
− Programs to support policies to reduce GHG emissions
DivRev05 page 36