Intensity of Energy Use Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions Mark D.
Download ReportTranscript Intensity of Energy Use Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions Mark D.
Intensity of Energy Use Topics 1 Global Perspective 2 China Situation 3 United States 4 California 5 Conclusions Mark D. Levine [email protected] For Energy & Climate Mini-Workshop Monday, 3 November 2008 Intensity of Energy Use Definition Reducing intensity of energy use includes: • energy efficiency • structural change in economy (producing and consuming less energy-intensive products) • energy conservation 1 Global Perspective Annual Global CO2 Emissions 全球二氧化碳年排放量 billion tonnes carbon dioxide 十 亿 吨 二 氧 化 碳 30 25 20 15 Other Global Emissions 其他国家排放量 10 China 中国 5 US 美国 0 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 Source: Historical 1950-2003 US and global emissions data from Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center; 2004-2006 US data from BP via Global Carbon Project. China 1950-2006 emissions data are derived from revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon coefficients by LBNL 数据来源: 1950-2003年美国和全球的年排放数据来自橡树岭国家实验室二氧化碳信息分析中心;2004-2006年美国排放数据来自BP石油公司全球碳研究项目; 1950-2006年中国的年排放数据是劳伦斯-伯克利国家实验室根据修正后的2007年中国统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定 的. Between 1970 and 2004 global greenhouse gas emissions increased by 70%. Total GHG emissions WEO ’07 base case for 2030 has 55% increase from 2005 (increase of 25 Gt CO2 eq/yr) 60 55 Gt CO2 eq/yr 50 45 40 35 30 25 20 15 10 5 0 1970 1980 1990 2000 2004 IPCC (WGIII) Estimates of Economically Feasible CO2eq/yr Reductions in 2030 by Sector in 2030 6* 4* 4* 3* 3* 3* Total reductions Low: 13Gt/yr High 24Gt/y Constant emissions 25Gt/yr 2* * From “Design to Win (2007), a project of several foundations led by the Hewlett Foundation Annual Rate of Change in Energy/GDP for the World IEA (Energy/Purchasing Power Parity) and EIA (Energy/Market Exchange Rate) 2% - 1.3% Average = - 0.7% - 1.3% 1% 0% -1% -2% -4% note: Russia not included until 1992 in IEA data and 1993 in EIA data 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 1991 1990 1989 1988 1987 1986 EIA data 1984 1983 1982 1981 IEA data 1985 -3% Strategic Considerations • Two crucial immediate actions needed – (1) energy efficiency, (2) land use, and (3) cost-effective low carbon (electricity) supply – Very aggressive RD&D, especially on zero-carbon electricity (including electricity storage) • Much stronger government policies needed – Carbon tax (or cap and trade) – Rigorous policies are needed for all end-use sectors • Efficiency and fuel economy standards, building codes and retrofit requirements, and expanded demand-side management (DSM) – Few countries address industrial sector • Beyond energy efficiency: conservation and structural change – – – Change production processes (e.g., cement) Change industrial output and consumption patterns Lifestyle change 2 United States Energy Intensity in the United States 1949 - 2005 25.0 thousand Btu/$ (in $2000) 20.0 If intensity dropped at pre-1973 rate of 0.4%/year 15.0 Actual (2.1%/year) 10.0 5.0 if E/GDP had dropped only 0.4%/yr Actual (E/GDP drops 2.1%/yr) DivRev05 page 10 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1963 1961 1959 1957 1955 1953 1951 1949 0.0 1973 2005 United States Refrigerator Use v. Time 2,000 25 Average Energy Use or Price 1,600 20 1,400 1,200 $ 1,270 Refrigerator Size (cubic ft) 15 1,000 800 10 600 Energy Use per Unit (KWH/Year) 400 $ 462 5 Refrigerator Price in 1983 $ 200 0 1947 0 1952 1957 1962 1967 1972 1977 Source: David Goldstein 1982 1987 1992 1997 2002 Refrigerator volume (cubic feet) 1,800 United States Refrigerator Use (Actual) and Estimated Household Standby Use v. Time 1800 Estimated Standby Power (per house) 1600 1400 Refrigerator Use per Unit 1978 Cal Standard 1200 1987 Cal Standard 1000 1980 Cal Standard 800 1990 Federal Standard 600 400 1993 Federal Standard 2001 Federal Standard 200 2009 2007 2005 2003 2001 1999 1997 1995 1993 1991 1989 1987 1985 1983 1981 1979 1977 1975 1973 1971 1969 1967 1965 1963 1961 1959 1957 1955 1953 1951 1949 0 1947 Average Energy Use per Unit Sold (kWh per year) 2000 High # is worst DivRev05 page 14 High # is worst DivRev05 page 15 High # is worst Environmental Energy Technologies 11/7/2015 , p. 16 3 China Energy & GDP Growth in China 中国的能源消费与国内生产总值(GDP)增长之间的关系 160 Primary Energy Use (EJ) 一 次 能 源 消 费 ( 百 万 兆 焦 耳 ) 中国的二氧化碳排放占世界总排放量的百分比(1950-2002) 140 Estimated energy use at 1980 GDP energy intensity 120 基于1980年国内生产总值能源 强度估计中国的能源消费 100 80 152 EJ (official GDP) 152百万兆焦耳 (正式公布的国内 生产总值) 103 EJ (revised GDP) 103百万兆焦耳 60 (修正的国内生 产总值) 40 20 Actual energy use 58 EJ (actual) 实际能源消费 58百万兆焦耳 (实际) 0 1950 1955 1960 1965 1970 1975 Source: China Energy Group, Lawrence Berkeley National Laboratory 数据来源:劳伦斯-伯克利国家实验室,中国能源与环境研究室 1980 1985 1990 1995 2000 Energy-conservation policies & measures in Phase II • Energy Management — factory energy consumption quotas — factory energy conservation monitoring — efficient technology promotion — close inefficient facilities — controls on oil use • Financial Incentives — low interest rates for efficiency project loans — reduced taxes on efficient product purchases — incentives to develop new efficient products — monetary awards to efficient enterprises • RD&D – funded strategic technology development – funded demonstration projects • Information Services – national information network – national, local, and sectoral efficiency technical service centers • Education & Training – national, local, and sectoral efficiency training centers – Energy Conservation Week – school curricula Energy and GDP, Path to 2020 中国的能源消费与国内生产总值(至2020年) 2.4 2.1 36 energy target Actual energy 能源目标 32 实际能源消费 28 24 1.8 GDP target 1.5 国 内 生 产 总 值 千 亿 国内生产总值目标 20 2000 年 人 民 币 元 1.2 0.9 Actual GDP 实际国内生产总值 16 12 0.6 8 0.3 4 0 0 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 Source: NBS, China Statistical Yearbook, various years; China Statistical Abstract 2005; growth estimates extrapolated from mid-year production data for 2005; targets announced by NDRC 数据来源:中国国家统计局,中国统计年鉴(各年);中国统计摘要(2005);2005年增长数据是基于2005年年中生产数据通过插值方法得到的;目标 基于国家发展与改革委员会公布的数据 GDP (trillion 2000 RMB) ) Energy Consumed (billion tce) 2.7 ( 能 源 消 费 ( 十 亿 吨 标 准 煤 ) Annual CO2 Emissions: US & China 中美两国年二氧化碳排放比较 6,000 百 万 吨 二 氧 化 碳 5,000 US 4,000 美国 million tons carbon dioxide 3,000 China 2,000 中国 1,000 0 1980 1985 1990 1995 2000 2005 Source: US annual emissions amounts reported by US EIA in the 2006 Annual Energy Review and 2007 Flash Estimate; China emissions are derived from revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients by LBNL 数据来源: 美国的年排放数据来自美国能源部信息署2006年能源回顾和2007年初步估计;中国的年排放数据是由劳伦斯伯克利国家实验室根据修正后的2007年中国 统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定的. Global, Chinese & U.S. Per-Capita Energy-Related CO2 Emissions – 1950-2004 1950-2004年全球、中国和美国的人均能源相关二氧化碳排放量 25 tons CO2/person / 吨 二 氧 化 碳 人 20 US 美国 15 10 Global Average 全球平均 5 China 中国 0 1950 1956 1962 1968 1974 1980 1986 1992 1998 2004 Source: China emissions are derived from revised total energy consumption data published in the 2007 China Statistical Yearbook using revised 1996 IPCC carbon emission coefficients by LBNL; China population data from NBS and US Census (for 1950-51); global and American emissions data from Oak Ridge National Laboratory, Carbon Dioxide Information Analysis Center; global and American population data from US Census 数据来源:中国的年排放数据是劳伦斯伯克利国家实验室根据修正后的2007年中国统计年鉴中的总能源消费数据和1996 IPCC碳排放系数确定的.中国的人口数据 来自中国国家统计局(其中1950-51年数据来自美国统计局);全球和美国的年排放数据来自橡树岭国家实验室二氧化碳信息分析中心;全球和美国人口 数据来自美国统计局。 Coal Use & Energy-Related CO2 煤炭消费与能源相关二氧化碳排放 China’s Steel Production 1990 – 2007 China’s Cement Production 1990 – 2007 中国的水泥生产量(1990-2007年) 中国的钢铁生产量(1990-2007年) 500 1,400 1,200 400 1,000 300 800 200 600 400 100 0 1990 200 1995 2000 2005 0 1990 1995 2000 2005 Million Metric Tons 百万吨 Source: China Iron and Steel Association; Institute of Technical Information for the Building Materials Industry; U.S. Geological Survey 数据来源:中国钢铁协会;建筑材料工业技术情报研究所;美国国家地质调查局 Cement Production Worldwide: 2007 世界水泥生产量2007 其他国家 Rest of World 26% 墨西哥 Mexico 2% 意大利 Italy 2% 土耳其 Turkey 2% 西班牙 Spain 2% 俄罗斯 Russia 2% 韩国 Rep of Korea 2% 日本 Japan 3% United States 4% (includes Puerto Rico) 美国(包括波多黎各) 中国 India 6% 印度 China ~50% Source: U.S. Geological Survey 2008. Mineral Commodity Summaries: Cement; China National Bureau of Statistics, 2008 资料来源:美国地质调查局2008年。 矿产品摘要:水泥;中国国家统计局2008年数据。 Industrial Energy Intensities are Declining 工业能源强度在下降 /2000 千 克 标 准 煤 kgce/RMB (2000) 年 人 民 币 元 2.0 Smelting & rolling of ferrous metals 1.8 Petroleum, coke & nuclear 1.6 金属冶炼及压延加工 石油,焦炭与核电 Non-metal mineral products 非金属矿物制品 1.4 1.2 Chemicals 1.0 Non-ferrous metals 0.8 0.6 化工 Paper 有色金属 Coal 造纸 0.4 Electricity 0.2 0 1995 煤 Textiles 1996 1997 1998 电力 纺织 1999 Source: China Energy Group, Lawrence Berkeley National Laboratory 资料来源:劳伦斯-伯克利国家实验室, 中国能源与环境研究室 2000 2001 2002 2003 • China has mounted an aggressive set of programs to reduce energy intensity by 20% from 2005 to 2010 • It is likely to achieve a 15% reduction in energy intensity • Because of large future CO2 emissions of China, there is a strong case to be made for international support for China to reduce growth of emissions DivRev05 page 26 4 California California Per Capita Electricity Sales (not including self-generation) Per Capita Electricity Sales (not including self-generation) (kWh/person) 14,000 12,000 10,000 8,000 6,000 4,000 2,000 California United States 2004 2002 2000 1998 1996 1994 1992 1990 1988 1986 1984 1982 1980 1978 1976 1974 1972 1970 1968 1966 1964 1962 1960 0 Annual Energy Savings from Efficiency Programs and Standards 45000 --15% of Annual Electricity Use in California in 2003 40000 35000 30000 GWh 25000 20000 15000 10000 5000 0 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 Appliance Standards CEC (2005) Building Standards Efficiency Programs Annual Usage of Air Conditioning in New Homes in California Annual drop averages 4% per year 3,000 Initial California Title 24 Building Standards 100% California Title 20 Appliance Standards 1976-1982 2,000 Estimated Impact of 2006 SEER 12 Standards 1,500 1,000 33% 1992 Federal Appliance Standard 500 Source: CEC Demand Analysis Office 2006 2004 2002 2000 1998 1996 1994 1992 1990 1988 1986 1984 1982 1980 1978 1976 1974 1972 0 1970 kWh/YEAR 2,500 Annual Spending on Electricity Energy Efficiency (1976-2002) CEC Staff Report “Proposed Energy Savings Goals for Energy Efficiency Programs in California” (2003) Dramatic Increase in CA Utility DSM Program (2006-2008) Projected Spending on Electrical Energy Efficiency (2006-2008) 800,000 750,000 700,000 650,000 Historical Spending on Electrical Energy Efficiency (1976-2002) 600,000 550,000 500,000 450,000 400,000 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 2006 2007 Program Years CEC Staff Report “Proposed Energy Savings Goals for Energy Efficiency Programs in California” (2003) DivRev05 page 33 2008 Projected Impact of EE programs in reducing utility load growth (2004-2013) Annual Energy Load Growth (%) 4% Total Energy Requirements Adjusted Forecast (net of incremental program effects) 3% 2% 1% • • SDG&E SCE PG&E PSE PGE PacifiCorp NWE Idaho Power BC Hydro Avista 0% Utilities’ forecasted load growth without energy efficiency ranges from 1.1% to 2.4% annually The three CA utilities expect to reduce electricity growth to <0.5%/year (by >75% from base case expectations) over coming 10 years! 5 Observations and Conclusions Greatest Needs to Reduce Energy Intensity • What we can’t do well enough = need for RD&D − Near zero-energy commercial buildings − Electricity storage, especially batteries for vehicles − Industrial process and product substitution (including “dematerialization”) − Changes in behavior and lifestyle • U.S. Policy − More rigorous standards and codes for buildings, industry, and automobiles − Transfer DSM capabilities among utilities − Open discussion of cap and trade vs. carbon tax • International, especially China and India − Phase out CDM – too expensive and not effective − Programs to support policies to reduce GHG emissions DivRev05 page 36