Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ.
Download ReportTranscript Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ.
Network for Computational Nanotechnology (NCN) Purdue, Norfolk State, Northwestern, MIT, Molecular Foundry, UC Berkeley, Univ. of Illinois, UTEP Development of a Massively Parallel Nano-electronic Modeling Tool and its Application to Quantum Computing Devices Sunhee Lee Network for Computational Nanotechnology Electrical and Computer Engineering [email protected] Building block for quantum computing device •Quantum dot (QD) n=3 » Confinement (particle-in-a-box) » s- p- d- like orbitals (“artificial atom”) n=2 n=1 •Optical applications (LED/PD) Light absorption QDOT Lab @nanoHUB.org •Applications for quantum computers (QC) 6~7 ionized P in Si » Carry electron/nucleus spin info. 2 Hanson and Awschalom, Nature 453, 2008 M. Füchsle et.al., Nature Nanotechnology, 2010 Ionized P impurity QD •Phosphorus quantum dot in Si » Promising candidate for QC device » Long spin coherence times » Naturally uniform » Store electron/nucleus spin info. » Fabrication challenges •First single donor QD system !! » STM+MBE technology » 2D dopant patterning 1 QD images adopted with permission from Simmons’ group 3 5 4 2 3 Single Donor Quantum Dot: Experiment Experimental Work (UNSW): a single donor QD ! Questions: is this real?? • How can we explain the coupling of the channel donor to the Si:P leads ? • Can we quantify the controllability of plane Si:P leads on the channel confinement ? • Why are there the conductance streaks at the Coulomb diamond edges ? Prove it is real! (Purdue) Modeling Si:P QD : Need for atomistic modeling Si SiGe 150 nm •Predicting valley splitting in Si Si SiGe 16 nm SiGe 10 nm Alloy disorder » (First excited state) – (GND state) » Important measure in QC » 10 ueV ~ 1 meV Rough steps •Random alloy disorder » Sample variation (Error bars) » ex) disorders in the 2D Si:P layer, published in PRB Kharche et al. Appl. Phys. Lett. 90, 092109 (2007) •Individual dopant spectrum » Single impurity QD in finFET •Atomistic treatment with localized basis set » sp3d5s* atomistic tight-binding Lansbergen et al. Nat. Phys. 4, 656 (2008) 5 Modeling Si:P QD : Experience Modeling Work (Purdue): Single Donor QD system Strength • Single impurity physics (R. Rahman & S. Rogge) • Realistic modeling of Si:P contacts • Strong connections to experiment Single electron charging energy, transition points, gate controllability & Coulomb diamond Modeling Si:P QD : NEMO3D-peta •Solving an eigenvalue problem NEMO3D (physics) (Schrödinger solver) Localized orbital basis (sp3d5s*) » Atomistic grid » 𝐻Ψ = 𝐸Ψ » dim 𝐻 = (106~107) (atoms) X (10~20) (basis/atom) = 107~108 !! Atomistic structure (~106 atoms) •NEMO3D-peta (2008~) » Atomistic tight-binding, million atom simulation tool » For QD-like simulations » Inherits the physics aspect of NEMO3D » Schrödinger-Poisson self-consistency module » 3D spatial parallelization Useful in self-consistent simulations NEMO3D-peta (Schrödinger-Poisson solver) + NEMO3D 7 Parallelization engine in NEMO3D-peta •Why do we need “better” parallel computing? To reduce simulation time even more! NEMO3D: 1D slices 1 2 NEMO3D-peta: 2D/3D slices 4 8 16 𝐻= time NEMO3D : single shot eigenvalue problem NEMO3D-peta: Selfconsistent simulation !! (10~30 iterations) 8 # procs. NEMO3D-peta Highlights (2008~present) •90,000+ lines of code (from scratch!!) •3.5+ years of development • ~8 applications implemented » Expandable and maintainable •15,000,000 compute hours awarded » Capable of utilizing 32,000 processors •Released to Intel (2010) » Top of the Barrier / bandstructure app. •1 nanoHUB tool » 1d-hetero •15 Publications in line » 9 journal and conference papers (3 experimental) » 2 journal publication accepted (1 B. Weber et al. Science) » 4 journal publications ready for submission (1 M. Fuechsle et al.) 9 NEMO3D-peta for QD simulation NEMO3D-peta development NEMO3D (physics) (Schrödinger solver) 3D spatial parallelization Localized orbital basis (sp3d5s*) Atomistic structure (~106 atoms) Potential-charge self-consistency 10 QD Device modeling Single Donor Quantum Dot: Questions Experimental Work (UNSW): a single donor QD ! Questions: is this real?? • How can we explain the coupling of the channel donor to the Si:P leads ? • Can we quantify the controllability of plane Si:P leads on the channel confinement ? • Why are there the conductance streaks at the Coulomb diamond edges ? Prove it is real !! 11 Modeling: Domain •Domain 3D schematic » Doping plane 2D (n++ doped) » 3D distribution of charge δ-doping plane 56 nm Top view G2 D 360 nm S [001] G1 p-type substrate (1015cm-3) [1-10] [110] 12 Modeling: Background potential Device geometry (top view) G2 •Semi-classical calculation Semi-classical region » Background potential » WITHOUT impurity QD •Leads » (n++) doping region, ND=1021 (cm-3) DRN SRC •Background doping (p-) [1-10] » NA=1015(cm-3) G1 [110] •VSD = 0 •VG1=VG2=VG 13 Modeling: Impurity QD potential •Empty QD (ionized donor QD) » Binding energy data of P in Si (Rep. Prog. Phys., Vol. 44, 1981) » Coulombic (1/r) + TB param. fitting (Work by R. Rahman @ Nat. Phys.) » “D+” state • Single electron filled QD » QD potential “screened” Shallower potential » Self-consistent calculation » Next ground state “floats up” » “D0” state QD changes shape with electron filling !! 18 Modeling: Potential profile •Superposition » Background potential » QD potential Equilibrium potential profile [110] (nm) 15 Modeling: Charge filling (Ack: H. Ryu) Device geometry (top view) •Quantum region » Channel region » 12x60x20 (nm3) G2 DRN SRC Quantum region [1-10] •Compute ground eigenstate at each Vg •Determine charge filling G1 » Does Ground state hit EF(SRC)? [110] D+ 16 Modeling: Charge filling (Ack: H. Ryu) •VDS = 0 V, sweep VG •Plot D+ » Ground state eigenvalue (1s(A)) » EF •VG = 0.0 V » Channel empty (D+) -5 [110] (nm) 5 -5 - (nm) [110] Ground eigenstate Acknowledgment: Dr. Hoon Ryu 17 5 Modeling: Charge filling (Ack: H. Ryu) •VDS = 0 V, sweep VG •Plot D+ » Ground state eigenvalue (1s(A)) » EF •VG = 0.2 V » Channel empty (D+) -5 [110] (nm) 5 -5 - (nm) [110] Ground eigenstate 18 5 Modeling: Charge filling (Ack: H. Ryu) •VDS = 0 V, sweep VG •Plot D+ » Ground state eigenvalue (1s(A)) » EF •VG ≈ 0.45 V » 1s(A) hits EF » D+ D0 transition » Screened QD ! (impose D0 potential) 19 -5 [110] (nm) 5 -5 - (nm) [110] Ground eigenstate 5 Modeling: Charge filling (Ack: H. Ryu) •VDS = 0 V, sweep VG •Plot D0 » Ground state eigenvalue (1s(A)) » EF •VG ≈ 0.55 V » Channel filled by one electron (D0) -5 [110] (nm) 5 -5 - (nm) [110] Ground eigenstate 20 5 Modeling: Charge filling (Ack: H. Ryu) •VDS = 0 V, sweep VG •Plot D0 » Ground state eigenvalue (1s(A)) » EF •VG ≈ 0.72 V » 1s(A) hits EF » D0 D- transition -5 [110] (nm) 5 -5 - (nm) [110] Ground eigenstate 21 5 Modeling: Charge filling (Ack: H. Ryu) •Simulation vs. Experiment: How close are we ? 3. EC = 46.3 meV D+ -5 [110] (nm) 5 -5 - (nm) [110] 5 1e 0e Experiment Theory 1. 0e 1e Transition VG (V) 0.40 0.45 2. 1e 2e Transition VG (V) 0.80 0.72 3. Charging energy EC (meV) 47 ± 2 46.3 0.11 0.15 4. Gate Lever-arm 22 Modeling: Coulomb diamond (Ack: Y.H.M. Tan) •Extract results from NEMO3D-peta Lead DOS profiles » Channel states » Lead DOS profiles •Rate equation tool Methodology, S. Lee, PRB 2011 Si:P wire, H. Ryu, PhD dissertation, 2011 B. Weber, Science 2011 Transition points ( 0.42, 0.72V) Charging energy (Ec = 46.3 meV) Gate controllability (slope a = 0.15) Lead DOS profiles (streaks) Channel states, EF 23 Single Donor Quantum Dot: Answers Experimental Work (UNSW): a single donor QD ! • How can we explain the coupling of the channel donor to the Si:P leads ? Semi-classical treatment of gate biasing No stark effect (parallel shift of ground state) • Can we quantify the controllability of plane Si:P leads on the channel confinement ? Transition points / Charging energy • Why are there the conductance streaks at the Coulomb diamond edges ? Excited states + DOS of the leads 24 Conclusion •Quantitative match with experiment » Transition point / charging energy / in-plane gate modulation A strong support for single impurity QD •Methodology applicable for future Si:P QD devices Experiment Theory 1. 0e 1e Transition VG (V) 0.40 0.45 2. 1e 2e Transition VG (V) 0.80 0.72 3. Charging energy EC (meV) 47 ± 2 46.3 0.11 0.15 4. Gate Lever-arm 25 Summary •Focused on the electrostatic modeling of single donor QD » Gate modulation and charge filling » A quantitative match with the experimental results » Methodology can be extended to future Si:P QD system •Transition phase (Y.H.M Tan) » Double Donor QD (D-168) •Understanding the two-electron operations in multiple QD systems •Find new methods to efficiently model QDs 26 Double Quantum Dot Acknowledgment • Committee members » Prof. Gerhard Klimeck » Prof. Mark Lundstrom, Prof. Leonid Rokhinson, Prof. Alejandro Strachan & Prof. Michelle Simmons • Special thanks to … » » » » Dr. Hoon Ryu Matthias Tan, Zhengping Jiang & Junzhe Geng Dr. Abhijeet Paul Changwook Jeong, Seokmin Hong & Jayoung Park • Thanks to … » Dr. Mathieu Luisier, Dr. Honghyun Park, Dr. Jim Fonseca & Dr. Michael Povolotskyi » Sunggeun Kim, Parijat Sengupta, Mehdi Salmani, Saumitra Mehrotra & Yahua Tan » Quantum dot subgroup • CQC2T Collaborators » Dr. Lloyd Hollenberg » Dr. Suddhasatta Mahapatra, Dr. Jill Miwa, Dr. Martin Fuechsle and Bent Weber • Cheryl Haines & Vicki Johnson • Funding agencies: NSF, ARO, MSD, SRC … 27 List of publications 1. S. Lee, H. Ryu, Z. Jiang, and G. Klimeck, “Million atom electronic structure and device calculations on peta-scale computers,” in 13th International Workshop on Computational Electronics, 2009 (IWCE '09), May 2009 2. H. Ryu, S. Lee, and G. Klimeck, “A study of temperature-dependent properties of n-type delta-doped Si band-structures in equilibrium,” in 13th International Workshop on Computational Electronics, 2009 (IWCE '09), May 2009 3. S. Lee, H. Ryu, G. Klimeck, H. Campbell, S. Mahapatra, M. Y. Simmons, and L. C. L. Hollenberg, “Equilibrium bandstructure of a phosphorus delta-doped layer in silicon using a tight-binding approach,” IEEE Proceedings of NANO 2010, 2010 4. H. Ryu, S. Lee, B. Weber, S. Mahapatra, M. Simmons, L. Hollenberg, and G. Klimeck, “Quantum transport in ultra-scaled phosphorous-doped silicon nanowires,” in Silicon Nanoelectronics Workshop (SNW), Jun. 2010 5. B. Weber, S. Mahapatra, W. R. Clarke, R. H., L. S., G. Klimeck, L. C. L. Hollenberg, and M. Y. Simmons, “Quantum transport in atomic-scale silicon nanowires,” in Silicon Nanoelectronics Workshop (SNW), Jun. 2010 6. G. Tettamanzi, A. Paul, G. Lansbergen, J. Verduijn, S. Lee, N. Collaert, S. Biesemans, G. Klimeck, and S. Rogge, “Thermionic emission as a tool to study transport in undoped n-FinFETs,” IEEE Electron Device Letters, vol. 31, Feb. 2010 7. G. Tettamanzi, A. Paul, S. Lee, S. Mehrotra, N. Collaert, S. Biesemans, G. Klimeck, and S. Rogge, “Interface trap density metrology of state-of-the-art undoped Si n-FinFETs,” IEEE Electron Device Letters, vol. 32, Apr. 2011 8. A. Paul, G. C. Tettamanzi, S. Lee, S. Mehrotra, N. Colleart, S. Biesemans, S. Rogge, and G. Klimeck, “Interface trap density metrology from sub-threshold transport in highly scaled undoped Si n -FinFETs,” accepted for publication in Journal of Applied Physics 2011 9. A. G. Akkala, S. Steiger, J. M. D. Sellier, S. Lee, M. Povolotskyi, T. C. Kubis, H. Park, S. Agarwal, and G. Klimeck, “1d heterostructure tool,” https://nanohub.org/resources/5203, Sep. 2008 (Now replaced by NEMO 5) 10. S. Lee, H. Ryu, H. Campbell, L. C. L. Hollenberg, M. Y. Simmons and G. Klimeck, “Electronic structure of realistically extended atomistically resolved disordered Si:P δ-doped layers,” Physical Review B, 84 205309, 2011 11. B. Weber, S. Mahapatra, H. Ryu, S. Lee, A. Fuhrer, T. C. G. Reusch, D. L. Thompson, W.C.T. Lee, G. Klimeck, L. C. L. Hollenberg, M.Y. Simmons, “Ohm’s law Survives to the Atomic Scale,”, accepted for publication in Science 2011 12. Three other publications ready for submission, one in preparation 28 Result 4 : Coulomb diamond Basic Features Ground + excited states Ground states Coupling DOS in leads Si MOS QD •Electrostatically defined QD (UNSW) » MOS fabrication technology » Dit = 5x1010 cm-2eV-1 (x 0.1~0.01) » Nelectron = 0, 1, 2, … !! Lateral confinement Vertical confinement Electron charging [001] [110] 30 [110] Challenges •Six-valley degeneracy » Valley splitting (Δ) = First excited eigenstate – GND state » In this QD : ~100 ueV •Questions » What are the possible factors that influence VS ? » Does our results compare experimental results ? Typical quantum well case example 31 Method •Simulation domain » Size = 60x90x30 nm3, 8 million atoms •Self-consistent simulation » Input 1: Barrier height (VB1=VB2) » Input 2: Plunger gate size (30xWc) Wc= 30,40,50 & 60 nm » Input 3: Assume 1 electron filled [1-10] [110] » Output 1: VP » Output 2: VS [001] 32 [110] Results Small lateral barrier height Large lateral barrier height Weak vertical confinement Strong vertical confinement •Smaller dot, Large lateral barrier Stronger confinement Eigenstates float up Deeper vertical confinement required •VS range : 100~500 ueV (100 ueV exp.) •VS tunable but sensitive to QD geometry and lateral barrier height 33 Conclusion •VS in Si MOS QD •100~500 ueV (100 ueV exp.) •VS can be tunable » Controlling barrier height » Adjusting QD size » Sensitive to electrostatics •Work is still in progress » Excited state spectrum @ N electron regime » Compare VS with SiGe-Si-SiGe QD 34