Photon counting arrays for AO wavefront sensors John Vallerga, Jason McPhate, Anton Tremsin and Oswald Siegmund Space Sciences Laboratory, University of California, Berkeley Bettina Mikulec.

Download Report

Transcript Photon counting arrays for AO wavefront sensors John Vallerga, Jason McPhate, Anton Tremsin and Oswald Siegmund Space Sciences Laboratory, University of California, Berkeley Bettina Mikulec.

Photon counting arrays for AO
wavefront sensors
John Vallerga, Jason McPhate, Anton Tremsin
and Oswald Siegmund
Space Sciences Laboratory, University of California, Berkeley
Bettina Mikulec and Allan Clark
University of Geneva
SPIE 2005 - San Diego - J. Vallerga
Future WFS detector requirements
• High optical QE for fainter guide stars
• Lots of pixels - eventually 512 x 512
– More accuators
– More complex LGS images (parallax, gated, etc)
– Off null / open loop operation
• Very low (or zero!) readout noise
• kHz frame rates
SPIE 2005 - San Diego - J. Vallerga
Advantages of multi-pixel sampling of
Shack-Hartmann spots
Quad cell (2x2) algorithm for Gaussian input
Calculated position
1
Sigma
Sigma
Sigma
Sigma
Sigma
= 0.2
= 0.4
= 0.6
= 0.8
= 1.0
0
-1
-1
0
Centroid true position
1
Non-linearity of 2 x 2 binning
SPIE 2005 - San Diego - J. Vallerga
Advantages of multi-pixel sampling of
Shack-Hartmann spots
4x4
6x6
4x4 COG non-linearity for Gaussian input
6x6 COG non-linearity for Gaussian input
1
Sigma = 0.4
Sigma = 0.8
Sigma = 1.2
0.5
Calculated position
(center of gravity)
Calculated position
(center of gravity )
1
0
-0.5
Sigma = 0.4
Sigma = 0.8
Sigma = 1.2
0.5
0
-0.5
-1
-1
-1
-0.5
0
0.5
Centroid true position
1
-1
-0.5
0
Centroid true position
Linear response off-null
Insensitive to input width
More sensitive to readout noise
SPIE 2005 - San Diego - J. Vallerga
0.5
1
Centroid in presence of noise:
1000 photons
100 photons
10 photons
8x8
Noiseless
35% QE
8x8
2.5 e- rms
90% QE
SPIE 2005 - San Diego - J. Vallerga
-
-
6x6
2.5 e- rms
90% QE
-
4x4
2.5 e- rms
90% QE
Photon Counting
Count
(x,y,t)
Events
Threshold
Charge integrating
Q
SPIE 2005 - San Diego - J. Vallerga
V  sv
ADC
Events
 sEvents
Avalanche Photodiodes (APDs, Geiger mode)
•Single photon causes
breakdown in over-voltaged
diode
•QE potential of silicon
•Arrays in CMOS becoming
available
But
•Appreciable deadtime
•Low filling factor
•High dark counts, crosstalk
and afterpulsing
SPIE 2005 - San Diego - J. Vallerga
APD arrays
32 x 32
Edoardo Charbon
Ecole Polytechnique Federale de Lausanne
SPIE 2005 - San Diego - J. Vallerga
L3CCD (e2V Technologies)
•Integrates charge
•Multiplies charge in special
readout register
•Adjust gain such that se < 1e-
But
•Multiplication noise doubles
photon noise variance
•Single readout limiting frame
rate
SPIE 2005 - San Diego - J. Vallerga
Imaging, Photon Counting Detectors
Photocathode converts photon to electron
MCP(s) amplify electron by 104 to 108
Rear field accelerates electrons to anode
Patterned anode measures charge centroid
SPIE 2005 - San Diego - J. Vallerga
MCP Detectors at SSL Berkeley
COS FUV for Hubble (200 x 10 mm windowless)
25 mm Optical Tube
GALEX 68 mm
NUV Tube (in orbit)
SPIE 2005 - San Diego - J. Vallerga
GaAsP Photocathodes
Hayashida et al. Beaune 2005 NIM
SPIE 2005 - San Diego - J. Vallerga
Wavefront Sensor Event Rates
• 5000 centroids
• Kilohertz feedback rates (atmospheric
timescale)
• 1000 detected events per spot for sub-pixel
centroiding

5000 x 1000 x 1000 = 5 Gigahertz
counting rate!
• Requires integrating detector
SPIE 2005 - San Diego - J. Vallerga
Our concept
• An optical imaging tube
using:
– GaAsP photocathode
– Microchannel plate to
amplify a single
photoelectron by 104
– ASIC to count these
events per pixel
SPIE 2005 - San Diego - J. Vallerga
Photocathode
Photon
e-
Q = 104e-
Pij = Pij + 1
Window
MCP
Medip ix2
Medipix2 ASIC Readout
 Each pixel has amp, discriminator, gate & counter.
 256 x 256 with 55 µm pixels (buttable to 512 x 512).
 Counts integrated at pixel. No charge transfer!
 Developed at CERN for Medipix collaboration (xray)
Previous Pixel
Shut ter
Mask bit
Lower Thresh.
Polarity
Mux.
Clock out
Disc.
Disc.
logic
Input
Preamp
Disc.
Mux.
13 bit
counter –
Shift
Register
Upper Thresh.
Mask bit
Next Pixel
Analog
SPIE 2005 - San Diego - J. Vallerga
Digital
~ 500 transistors/pixel
Vacuum Tube Design
SPIE 2005 - San Diego - J. Vallerga
Vacuum Tube Design
SPIE 2005 - San Diego - J. Vallerga
Vacuum Tube Design
SPIE 2005 - San Diego - J. Vallerga
Vacuum Tube Design
SPIE 2005 - San Diego - J. Vallerga
Technology advantage
High QE
CCDs
Number of pixels
CCDs, Medipix
Readout noise
APD, Medipix, L3CCD
Frame rate
Medipix, CCD
Gating
Medipix
SPIE 2005 - San Diego - J. Vallerga
Assumed performance parameters
MedipixMCP
CCD
Binning
2x2
6x6
8x8
8x8
QE (%)
90
90
90
35
Readout
noise
2.5 e-
2.5 e-
2.5 e-
0
Seeing width
(pxls FWHM)
0.75
2.25
3
3
Diffract. width
(pxls FWHM)
0.5
1.5
2
2
SPIE 2005 - San Diego - J. Vallerga
Gaussian weighted center of gravity
algorithm:
 N T   N  N 
(s )ph 
    

2ln(2)( N ph )  N D  2N  N 

2

(s )det
2

2
2
2
T
2
T
2
W
2
W
2
2
2


N T  N W 

s det

 
  

2
32(ln(2)) ( N ph )   N D 
2
3
(s 2 )tot  (s 2 )det  (s 2 )ph
From Fusco et al SPIE 5490. 1155, 2004
SPIE 2005 - San Diego - J. Vallerga
2
Centroid error vs. input fluence
Centroid estimator error vs. technique
Centroid Error (rms, radians)
100.000
CCD Quad cell
CCD 8x8 weighted
CCD 6x6 weighted
Medipix 8x8 weighted
10.000
1.000
0.100
1
10
100
Input number of photons
SPIE 2005 - San Diego - J. Vallerga
1000
Summary
• Noiseless detectors outperform CCDs
at low fluence
• “Crossover” point at 90 photons for 8x8
binning using best performance values
• Higher if weighting/correlation schemes
not used
MCP/Medipix Status
• First tube in Fall 2005
• GaAs tube in 1st half of 2006
SPIE 2005 - San Diego - J. Vallerga
Acknowledgements
This work was funded by an AODP grant managed by
NOAO and funded by NSF
Thanks to the Medipix Collaboration:
•
Univ. of Barcelona
•
University of Napoli
•
University of Cagliari
•
NIKHEF
•
CEA
•
University of Pisa
•
CERN
•
University of Auvergne
•
University of Freiburg
•
Medical Research Council
•
University of Glasgow
•
Czech Technical University
•
Czech Academy of Sciences
•
ESRF
•
Mid-Sweden University
•
University of Erlangen-Nurnberg
SPIE 2005 - San Diego - J. Vallerga
UV photon counting movie
QuickTime™ and a
YUV420 codec decompressor
are needed to see this picture.
SPIE 2005 - San Diego - J. Vallerga
First test detector
• Demountable detector
• Simple lab vacuum, no photocathode
• Windowless – UV sensitive
SPIE 2005 - San Diego - J. Vallerga
Sub-pixel spatial linearity
Lamp
Pinhole
Detector
SPIE 2005 - San Diego - J. Vallerga
Spot size vs gain
Pinhole grid mask
(0.5 x 0.5 mm)
Gain: 20,000
Rear Field: 1600V
Threshold: 3 keGap: 500µm
SPIE 2005 - San Diego - J. Vallerga
Avg. movement of 700 spots
0
Delta X
Centroid Position (µm)
-10
Delta Y
-20
-30
1 pixel
-40
-50
-60
-70
-80
-90
-100
0
5
10
15
Lamp Position (mm)
SPIE 2005 - San Diego - J. Vallerga
20
25
Position error (550 events/spot)
50
Number of centroids
45
40
35
30
rms = 2.0 µm
25
20
15
10
5
0
-20
-15
-10
-5
0
5
10
Centroid difference (microns)
SPIE 2005 - San Diego - J. Vallerga
15
20
Flat Field
MCP deadspots
Hexagonal multifiber
boundaries
1200 cts/bin - 500Mcps
SPIE 2005 - San Diego - J. Vallerga
Flat Field (cont)
Ratio Flat1/Flat2
SPIE 2005 - San Diego - J. Vallerga
Histogram of Ratio
consistent with counting
statistics (2% rms)
Readout Architecture
• Pixel values are digital (13 bit)
3328 bit Pixel Column 255
3328 bit Pixel Column 1
3328 bit Pixel Column 0
• Bits are shifted into fast shift
register
256 bit fast shift register
32 bit CMOS output
LVDS out
SPIE 2005 - San Diego - J. Vallerga
• Choice of serial or 32 bit parallel
output
• Maximum designed bandwidth is
100MHz
• Corresponds to 266µs frame
readout
“Built-in” Electronic Shutter
•
•
•
•
•
•
Enables/Disables counter
Timing accuracy to 10 ns
Uniform across Medipix
Multiple cycles per frame
No lifetime issues
External input - can be phased to laser
SPIE 2005 - San Diego - J. Vallerga