Unitary Fermi gas in the e expansion Yusuke Nishida (Univ. of Tokyo & INT) in collaboration with D.
Download ReportTranscript Unitary Fermi gas in the e expansion Yusuke Nishida (Univ. of Tokyo & INT) in collaboration with D.
Unitary Fermi gas in the e expansion Yusuke Nishida (Univ. of Tokyo & INT) in collaboration with D. T. Son [Ref: Phys. Rev. Lett. 97, 050403 (2006), cond-mat/0607835, cond-mat/0608321] 26 December, 2006 @ Univ. of Tokyo Unitary Fermi gas in the e expansion Contents of this talk 1. Fermi gas at infinite scattering length 2. Formulation of expansions in terms of 4-d and d-2 3. Results at zero/finite temperature 4. Summary and outlook Contents of thesis 1. Introduction 2. Two-body scattering in vacuum 3. Unitary Fermi gas around d=4 4. Phase structure of polarized Fermi gas 5. Fermions with unequal masses 6. Expansions around d=2 7. Matching of expansions at d=4 and d=2 8. Thermodynamics below Tc 9. Thermodynamics above Tc 10. Summary and concluding remarks 4/30 Introduction : Fermi gas at infinite scattering length Interacting Fermion systems Attraction Superconductivity / Superfluidity Metallic superconductivity (electrons) Onnes (1911), Tc = ~9.2 K BCS theory Liquid 3He Lee, Osheroff, Richardson (1972), Tc = 1~2.6 mK(1957) High-Tc superconductivity (electrons or holes) Bednorz and Müller (1986), Tc = ~160 K Atomic gases (40K, 6Li) Regal, Greiner, Jin (2003), Tc ~ 50 nK • Nuclear matter (neutron stars): ?, Tc ~ 1 MeV • Color superconductivity (quarks): ??, Tc ~ 100 MeV • Neutrino superfluidity: ??? [Kapusta, PRL(’04)] 5/30 Feshbach resonance C.A.Regal and D.S.Jin, Phys.Rev.Lett. 90, (2003) 6/30 Attraction is arbitrarily tunable by magnetic field S-wave scattering length : [0, ] a (rBohr) a>0 Feshbach resonance Strong coupling |a| Bound state formation a<0 40K Weak coupling |a|0 No bound state BCS-BEC crossover Eagles (1969), Leggett (1980) Nozières and Schmitt-Rink (1985) 7/30 Strong interaction Superfluid phase 1/(akF)=- BCS state of atoms weak interaction: akF-0 -B 1/(akF)=+ 1/(akF)=0 BEC of molecules weak interaction: akF+0 Strong coupling limit : |akF| • Maximal S-wave cross section • Threshold: Ebound = 1/(2ma2) 0 Unitarity limit Fermi gas in the strong coupling limit akF= : Unitary Fermi gas Unitary Fermi gas George Bertsch (1999), “Many-Body X Challenge” 8/30 Atomic gas : |a|=1000Å >> kF-1=100Å >> r0 =10Å What are the ground state properties of the many-body system composed of spin-1/2 fermions interacting via a zero-range, infinite scattering length contact interaction? 0 r0 << kF-1 << a kF-1 kF is the only scale ! Energy per particle r0 x is independent of systems V0(a) cf. dilute neutron matter |aNN|~18.5 fm >> r0 ~1.4 fm Universal parameter x • Simplicity of system x is universal parameter 9/30 • Difficulty for theory No expansion parameter Models • Mean field approx., Engelbrecht et al. (1996): x<0.59 • Linked cluster expansion, Baker (1999): • Galitskii approx., Heiselberg (2001): • LOCV approx., Heiselberg (2004): • Large d limit, Steel (’00)Schäfer et al. (’05): Simulations • Carlson et al., Phys.Rev.Lett. (2003): • Astrakharchik et al., Phys.Rev.Lett. (2004): • Carlson and Reddy, Phys.Rev.Lett. (2005): x=0.3~0.6 x=0.33 x=0.46 x=0.440.5 x=0.44(1) x=0.42(1) x=0.42(1) Experiments Duke(’03): 0.74(7), ENS(’03): 0.7(1), JILA(’03): 0.5(1), Innsbruck(’04): 0.32(1), Duke(’05): 0.51(4), Rice(’06): 0.46(5). No systematic & analytic treatment of unitary Fermi gas 10/30 Unitary Fermi gas at d≠3 g d=4 BCS - Strong coupling Unitary regime g d=2 • d4 : Weakly-interacting system of fermions & bosons, their coupling is g~(4-d)1/2 BEC + • d2 : Weakly-interacting system of fermions, their coupling is g~(d-2) Systematic expansions for x and other observables (D, Tc, …) in terms of “4-d” or “d-2” 11/30 Formulation of e expansion e=4-d <<1 : d=spatial dimensions 12/30 Specialty of d=4 and d=2 2-component fermions local 4-Fermi interaction : 2-body scattering in vacuum (m=0) (p0,p) iT = 1 n T-matrix at arbitrary spatial dimension d “a” Scattering amplitude has zeros at d=2,4,… Non-interacting limits T-matrix around d=4 and 2 13/30 T-matrix at d=4-e (e<<1) ig = iT ig iD(p0,p) Small coupling b/w fermion-boson g = (8p2 e)1/2/m T-matrix at d=2+e (e<<1) ig2 iT = Small coupling b/w fermion-fermion g = (2p e/m)1/2 Lagrangian for e expansion 14/30 • Hubbard-Stratonovish trans. & Nambu-Gor’kov field : =0 in dimensional regularization Ground state at finite density is superfluid : Expand with • Rewrite Lagrangian as a sum : L = L0+ L1+ L2 Boson’s kinetic term is added, and subtracted here. Feynman rules 1 • L0 : Free fermion quasiparticle and boson • L1 : Small coupling “g” between and (g ~ e1/2) Chemical potential insertions 15/30 16/30 Feynman rules 2 • L2 : “Counter terms” of boson “Naïve” power counting of 1. Assume and consider e justified later to be O(1) 2. Draw Feynman diagrams using only L0 and L1 (not L2) 3. Its powers of e will be Ng/2 + Nm Number of m insertions Number of couplings “g ~ e1/2” But exceptions Fermion loop integrals produce 1/e in 4 diagrams Exceptions of power counting 1 1. Boson self-energy 17/30 naïve O(e) k p p p+k = O(e) + Cancellation with L2 vertices to restore naïve counting 2. Boson self-energy with m insertion k p p p+k + = O(e2) naïve O(e2) Exceptions of power counting 2 18/30 3. Tadpole diagram with m insertion p k = O(e1/2) Sum of tadpoles = 0 naïve O(e3/2) Gap equation for 0 + ··· = 0 + O(e1/2) O(e1/2) 4. Vacuum diagram with m insertion k = O(1) O(e) Only exception ! “Revised” power counting of 1. Assume and consider e justified later to be O(1) 2. Draw Feynman diagrams using only L0 and L1 3. If there are subdiagrams of type or add vertices from L2 : 4. Its powers of or e will be Ng/2 + Nm 5. The only exception is = O(1) 19/30 Expansion over e = d-2 20/30 Lagrangian Power counting rule of e 1. Assume and consider justified later to be O(1) 2. Draw Feynman diagrams using only L0 and L1 3. If there are subdiagrams of type add vertices from L2 : 4. Its powers of e will be Ng/2 21/30 Results at zero/finite temperature Leading and next-to-leading orders 22/30 Thermodynamic functions at T=0 • Effective potential : Veff = vacuum diagrams p Veff = k + k + p-q + O(e2) q O(1) O(e) C=0.14424… • Gap equation of 0 Assumption • Pressure : P=-Veff with solution of gap eq. 0 is OK ! Universal parameter x 23/30 • Universal relations • Universal parameter x around d=4 and 2 Arnold, Drut, Son (’06) Systematic expansion of x in terms of e ! 24/30 Quasiparticle spectrum • Fermion dispersion relation : w(p) O(e) p-k Self-energy - i S(p) = diagrams k-p + p k p p Expansion over 4-d Energy gap : Location of min. : Expansion over d-2 0 k p Extrapolation to d=3 from d=4-e 25/30 • Keep LO & NLO results and extrapolate to e=1 NLO corrections are small 5 ~ 35 % Good agreement with recent Monte Carlo data J.Carlson and S.Reddy, Phys.Rev.Lett.95, (2005) cf. extrapolations from d=2+e NLO are 100 % Matching of two expansions in x 26/30 • Borel transformation + Padé approximation x ♦=0.42 2d boundary condition 2d • Interpolated results to 3d 4d d 27/30 Critical temperature • Gap equation at finite T Veff = + + + m insertions • Critical temperature from d=4 and 2 NLO correction is small ~4 % Simulations : • Bulgac et al. (’05): Tc/eF = 0.23(2) • Lee and Schäfer (’05): Tc/eF < 0.14 • Burovski et al. (’06): Tc/eF = 0.152(7) • Akkineni et al. (’06): Tc/eF 0.25 28/30 Matching of two expansions (Tc) Tc / eF • Borel + Padé approx. 4d • Interpolated results to 3d 2d d NLO e1 2d + 4d Bulgac et al. Burovski et al. Tc / eF P / eFN E / eFN m / eF S/N 0.249 0.135 0. 212 0.180 0.698 0.183 0.172 0.270 0.294 0.642 0.23(2) 0.27 0.41 0.45 0.99 0.152(7) 0.207 0.31(1) 0.493(14) 0.16(2) Summary 1 e expansion for unitary Fermi gas Systematic expansions over 4-d and d-2 • Unitary Fermi gas around d=4 becomes weakly-interacting system of fermions & bosons • Weakly-interacting system of fermions around d=2 LO+NLO results on x, D, e0, Tc (P,E,m,S) • NLO corrections around d=4 are small • Naïve extrapolation from d=4 to d=3 gives good agreement with recent MC data Picture of weakly-interacting fermionic & bosonic quasiparticle for unitary Fermi gas may be a good starting point even at d=3 29/30 Summary 2 e expansion for unitary Fermi gas 30/30 Matching of two expansions around d=4 and d=2 • NLO 4d + NLO 2d • Borel transformation and Padé approximation Results are not too far from MC simulations Future Problems • Large order behavior + NN…LO corrections • Analytic structure of x in “d” space Precise determination of universal parameters • Other observables, e.g., Dynamical properties 31/30 Back up slides Specialty of d=4 and 2 Z.Nussinov and S.Nussinov, 32/30 cond-mat/0410597 2-body wave function Normalization at unitarity a diverges at r0 for d4 Pair wave function is concentrated near its origin Unitary Fermi gas for d4 is free “Bose” gas At d2, any attractive potential leads to bound states “a” corresponds to zero interaction Unitary Fermi gas for d2 is free Fermi gas Effective potential Veff (0) • Leading order O(1) 33/30 Boson’s 1-loops k and k vanish at T=0 • Next-to-leading order O(e) p p-q q C=0.14424… Universal parameter x 34/30 • Gap equation of 0 Assumption is OK ! • Fermion density and Fermi energy • Universal parameter : x = m/eF Systematic expansion of x in terms of e ! NNLO correction for x Arnold, Drut, and Son, cond-mat/0608477 35/30 • O(e7/2) correction for x • Borel transformation + Padé approximation x Interpolation to 3d • NNLO 4d + NLO 2d NLO 4d NLO 2d cf. NLO 4d + NLO 2d NNLO 4d d 36/30 Quasiparticle spectrum • Fermion 1-loop self-energy O(e) p-k k-p - i S(p) = + p k p p • Fermion dispersion relation : w(p) k p LO : Around minimum : Energy gap : Location of min. : NLO 37/30 Hierarchy in temperature At T=0, D(T=0) ~ m/e >> m 2 energy scales (i) Low : T ~ m << DT ~ m/e D(T) • Fermion excitations are suppressed • Phonon excitations are dominant (i) (ii) (iii) T 0 (ii) Intermediate : m < T < m/e (iii) High : T ~ m/e >> m ~ DT • Condensate vanishes at Tc ~ m/e • Fermions and bosons are excited ~m Tc ~ m/e Similar power counting • m/T ~ O(e) • Consider T to be O(1) Comparisons of Tc 38/30 e expansion (LO+NLO) Simulations : • Wingate (’05): • Lee and Schäfer (’05): • Bulgac et al. (’05): • Burovski et al. (’06): Tc/eF = 0.04 Tc/eF < 0.14 Tc/eF = 0.23(2) Tc/eF = 0.152(7) Tc/eF = 0.27(2) cf. BEC limit : TBEC/eF = 0.218… Experiment : • Kinast et al. (’05): Ideal BEC at d=4-e (convergent if |e| 2) 39/30 Large order behavior • d=2 and 4 are critical points free gas 2 3 4 r0≠0 • Critical exponents of O(n=1) 4 theory (e=4-d 1) g O(1) +e1 +e2 +e3 +e4 +e5 Lattice 1 1.167 1.244 1.195 1.338 0.892 1.239(3) • Borel transform with conformal mapping g=1.23550.0050 • Boundary condition (exact value at d=2) g=1.23800.0050 e expansion is asymptotic series but works well ! e expansion in critical phenomena 40/30 Critical exponents of O(n=1) 4 theory (e=4-d 1) O(1) g 1 0 +e1 1.167 0 +e2 +e3 +e4 +e5 Lattice Exper. 1.239(3) 1.240(7) 1.22(3) 1.24(2) 0.0185 0.0372 0.0289 0.0545 0.027(5) 0.016(7) 0.04(2) 1.244 e expansion is 1.195 1.338 0.892 • Borel summation with conformal mapping g=1.23550.0050 & =0.03600.0050 asymptotic series but works well ! • Boundary condition (exact value at d=2) g=1.23800.0050 & =0.03650.0050 How about our case???