e expansion in cold atoms Yusuke Nishida (INT, Univ. of Washington) in collaboration with D.

Download Report

Transcript e expansion in cold atoms Yusuke Nishida (INT, Univ. of Washington) in collaboration with D.

e expansion in cold atoms
Yusuke Nishida (INT, Univ. of Washington)
in collaboration with D. T. Son (INT)
[Ref: Phys. Rev. Lett. 97, 050403 (2006)
Phys. Rev. A 75, 063617 & 063618 (2007)]
1. Fermi gas at infinite scattering length
2. Formulation of e (=4-d, d-2) expansions
3. LO & NLO results
4. Summary and outlook
June 5, 2008 @ Grenoble BEC 2008 Workshop
Interacting Fermion systems
Attraction

2/16
Superconductivity / Superfluidity
Metallic superconductivity (electrons)
Kamerlingh Onnes (1911), Tc = ~4.2 K
BCS
 Liquid 3He
theory
(1957)
Lee, Osheroff, Richardson (1972), Tc = ~2.5 mK

High-Tc superconductivity (electrons or holes)
Bednorz and Müller (1986), Tc ~100 K

Cold atomic gases (40K, 6Li)
Regal, Greiner, Jin (2003), Tc ~ 50 nK
• Nuclear matter (neutron stars): ?, Tc ~ 1 MeV
• Color superconductivity (cold QGP): ??, Tc ~ 100 MeV
Feshbach resonance
C.A.Regal and D.S.Jin,
Phys.Rev.Lett. 90 (2003)
3/16
Attraction is arbitrarily tunable by magnetic field
S-wave scattering length : a (rBohr)
Strong
attraction
a>0
Feshbach resonance
zero binding energy
|a|
Weak attraction
a<0
bound
molecule
a
40K
B (Gauss)
V0(a)
r0
BCS-BEC crossover
Eagles (1969), Leggett (1980)
Nozières and Schmitt-Rink (1985)
4/16
Strong interaction
add=0.6a
?
Superfluid
phase
+
BEC of molecules
weak repulsion: akF+0
-
0
BCS state of atoms
weak attraction: akF-0
Unitary Fermi gas
• Strong coupling limit : |akF|
• Atomic gas @ Feshbach resonance
George Bertsch (1999),
“Many-Body X Challenge”
Unitary Fermi gas
5/16
Atomic gas @ Feshbach resonance: 0 r0 << kF-1 << a 
spin-1/2 fermions interacting via a zero-range,
infinite scattering length contact interaction
kF
Universal properties, but
-1
• Strong coupling limit
Perturbation akF=
r0
V0(a)
Previous approaches …
• Mean field approximations
• Monte Carlo simulations
• Difficulty for theory
No expansion parameter
e expansion !
• Use spatial dimensions
as a small parameter
6/16
Our approach from d≠3
g
d=4
BEC
+
Strong coupling
Unitary regime
g
d=2
• d4 : Weakly-interacting
system of fermions & bosons,
their coupling is g2~(4-d)
BCS
-
• d2 : Weakly-interacting
system of fermions,
their coupling is g~(d-2)
Systematic expansions for various physical
observables in terms of “4-d” or “d-2”
Specialty of d=4 and 2
Z.Nussinov and S.Nussinov,
cond-mat/0410597
2-body wave function
Normalization at unitarity a
diverges at r0 for d4
Pair wave function is concentrated near its origin
Unitary Fermi gas at d4 is free Bose gas
At d2, any attractive potential leads to bound states
“a” corresponds to zero interaction
Unitary Fermi gas at d2 is free Fermi gas
7/16
8/16
Field theoretical approach
Spin-1/2 fermions with
local 4-Fermi interaction :
2-body scattering at vacuum (m=0)

(p0,p) 
iT
=
1
n

T-matrix at arbitrary spatial dimension d
“a”
Scattering amplitude has zeros at d=2,4,…
Non-interacting limits
T-matrix around d=4 and 2
9/16
T-matrix at d=4-e (e<<1)
=
iT
ig
ig
iD(p0,p)
Small coupling
b/w fermion-boson
g = (8p2 e)1/2/m
T-matrix at d=2+e (e<<1)
ig
iT
=
Small coupling
b/w fermion-fermion
g = 2p e/m
10/16
Effective potential (NLO)
• Effective potential and gap equation around d=4
Veff (0,m) =
+
+ O(e2)
+
O(e)
O(1)
• Effective potential and gap equation around d=2
Veff (0,m) =
+ O(e2)
+
O(1)
O(e)
Equation of state at T=0
11/16
• Universal equation of state
Density “N” is the only scale !
• Universal parameter x around d=4 and 2
Systematic expansion of x in terms of e !
x0 (d4 : free Bose gas)
x1 (d2 : free Fermi gas)
12/16
Quasiparticle spectrum
• Fermion dispersion relation : w(p)
LO
self-energy - i S(p) =
diagrams
or
O(e)
O(e)
Expansion over 4-d
Energy gap :
Location of min. :
Expansion over d-2
0
Extrapolation to d=3 from d=4-e
13/16
• Keep LO & NLO results and extrapolate to e=1
NLO
corrections
are small
5 ~ 35 %
Good agreement with recent Monte Carlo data
J.Carlson and S.Reddy,
Phys.Rev.Lett. 95, (2005)
cf. extrapolations from d=2+e
NLO are 100 %
Matching of two expansions in x
14/16
• Borel transformation + Padé approximants
x = Eunitary /Efree
♦=0.42
Expansion around 4d
2d boundary condition
2d
4d
• Interpolated results to 3d
d
free Fermi gas
free Bose gas
15/16
Critical temperature
• Critical temperature from d=4 and 2
NLO correction
is small ~4 %
• Interpolated results to d=3
Tc / eF
4d
Monte Carlo simulations
• Bulgac et al. (’05): Tc/eF = 0.23(2)
• Lee and Schäfer (’05): Tc/eF < 0.14
• Burovski et al. (’06): Tc/eF = 0.152(7)
• Akkineni et al. (’06): Tc/eF  0.25
2d
d
Summary
16/16
1. Systematic expansions over e=4-d or d-2
• Unitary Fermi gas around d=4 becomes
weakly-interacting system of fermions & bosons
• Weakly-interacting system of fermions around d=2
2. LO+NLO results on x, D, e0, Tc
• NLO corrections around d=4 are small
• Extrapolations to d=3 agree with recent MC data
Picture of weakly-interacting fermionic &
bosonic quasiparticles for unitary Fermi gas
may be a good starting point even in d=3
3. Future problems
• Large order behavior + NN…LO corrections
More understanding
Precise determination
NNLO correction for x
18/16
• NNLO correction for x
Arnold, Drut, Son, Phys.Rev.A (2006)
Nishida, Ph.D. thesis (2007)
x
Fit two expansions
using Padé approximants
Interpolations to 3d
• NNLO 4d + NNLO 2d
cf. NLO 4d + NLO 2d
d
e expansion in critical phenomena
19/16
Critical exponents of O(n=1) 4 theory (e=4-d  1)
O(1)
g

1
0
+e1
1.167
0
+e2
+e3
+e4
+e5
Lattice
Exper.
1.239(3)
1.240(7)
1.22(3)
1.24(2)
0.0185 0.0372 0.0289 0.0545 0.027(5)
0.016(7)
0.04(2)
1.244
e expansion is
1.195
1.338
0.892
• Borel summation with conformal mapping
g=1.23550.0050 & =0.03600.0050
asymptotic series
but works well ! • Boundary condition (exact value at d=2)
g=1.23800.0050 & =0.03650.0050
How about our case???
Comparison with ideal BEC
20/16
• Ratio to critical temperature in the BEC limit
Boson and fermion contributions to fermion density at d=4
• Unitarity limit at Tc
1 of 9 pairs is dissociated
• BEC limit at Tc
all pairs form molecules
21/16
Polarized Fermi gas around d=4
• Rich phase structure near unitarity point
in the plane of
and
: binding energy
Polarized normal state
Gapless superfluid
1-plane wave
FFLO : O(e6)
Gapped superfluid
BCS
BEC
unitarity
Stable gapless phases (with/without spatially varying
condensate) exist on the BEC side of unitarity point
Unitary Fermi gas
George Bertsch (1999),
“Many-Body X Challenge”
22/16
Atomic gas : r0 =10Å << kF-1=100Å << |a|=1000Å
What are the ground state properties of
the many-body system composed of
spin-1/2 fermions interacting via a zero-range,
infinite scattering length contact interaction?
0 r0 << kF-1 << a 
kF-1
kF is the only scale !
Energy
per particle
r0
x is independent of systems
V0(a)
cf. dilute neutron matter
|aNN|~18.5 fm >> r0 ~1.4 fm
Universal parameter x
• Strong coupling limit
Perturbation akF=
23/16
• Difficulty for theory
No expansion parameter
Models • Mean field approx., Engelbrecht et al. (1996): x<0.59
• Linked cluster expansion, Baker (1999):
• Galitskii approx., Heiselberg (2001):
• LOCV approx., Heiselberg (2004):
• Large d limit, Steel (’00)Schäfer et al. (’05):
Simulations • Carlson et al., Phys.Rev.Lett. (2003):
• Astrakharchik et al., Phys.Rev.Lett. (2004):
• Carlson and Reddy, Phys.Rev.Lett. (2005):
x=0.3~0.6
x=0.33
x=0.46
x=0.440.5
x=0.44(1)
x=0.42(1)
x=0.42(1)
Experiments Duke(’03): 0.74(7), ENS(’03): 0.7(1), JILA(’03): 0.5(1),
Innsbruck(’04): 0.32(1), Duke(’05): 0.51(4), Rice(’06): 0.46(5).
No systematic & analytic treatment of unitary Fermi gas
Lagrangian for e expansion
24/16
• Hubbard-Stratonovish trans. & Nambu-Gor’kov field :
=0 in dimensional regularization
Ground state at finite density is superfluid :
Expand
with
• Rewrite Lagrangian as a sum : L = L0+ L1+ L2
Boson’s kinetic
term is added,
and subtracted here.
Feynman rules 1
• L0 :
Free fermion quasiparticle  and boson 
• L1 :
Small coupling “g”
between  and 
(g ~ e1/2)
Chemical potential
insertions (m ~ e)
25/16
26/16
Feynman rules 2
• L2 :
“Counter vertices” to
cancel 1/e singularities
in boson self-energies
1.
k
p
O(e)
2.
p
+
= O(e)
p
+
= O(em)
p+k
k
p
O(em)
p+k
Power counting rule of
1. Assume
and consider
e
27/16
justified later
to be O(1)
2. Draw Feynman diagrams using only L0 and L1
3. If there are subdiagrams of type
or
add vertices from L2 :
4. Its powers of
or
e will be Ng/2 + Nm
5. The only exception is
Number of m insertions
Number of couplings “g ~ e1/2”
= O(1)
O(e)
Expansion over e = d-2
28/16
Lagrangian
Power counting rule of e
1. Assume
and consider
justified later
to be O(1)
2. Draw Feynman diagrams using only L0 and L1
3. If there are subdiagrams of type
add vertices from L2 :
4. Its powers of
e will be Ng/2
29/16
Hierarchy in temperature
At T=0, D(T=0) ~ m/e >> m
2 energy scales
(i) Low : T ~ m << DT ~ m/e
D(T)
• Fermion excitations are suppressed
• Phonon excitations are dominant
(i)
(ii)
(iii)
T
0
(ii) Intermediate : m < T < m/e
(iii) High : T ~ m/e >> m ~ DT
• Condensate vanishes at Tc ~ m/e
• Fermions and bosons are excited
~m
Tc ~ m/e
Similar power counting
• m/T ~ O(e)
• Consider T to be O(1)
30/16
Critical temperature
• Gap equation at finite T
Veff =
+
+
+ m insertions
• Critical temperature from d=4 and 2
NLO correction
is small ~4 %
Simulations :
• Bulgac et al. (’05):
Tc/eF = 0.23(2)
• Lee and Schäfer (’05): Tc/eF < 0.14
• Burovski et al. (’06): Tc/eF = 0.152(7)
• Akkineni et al. (’06): Tc/eF  0.25
31/16
Matching of two expansions (Tc)
Tc / eF
• Borel + Padé approx.
4d
• Interpolated results to 3d
2d
d
NLO e1
2d + 4d
Bulgac et al.
Burovski et al.
Tc / eF
P / eFN
E / eFN
m / eF
S/N
0.249
0.135
0. 212
0.180
0.698
0.183
0.172
0.270
0.294
0.642
0.23(2)
0.27
0.41
0.45
0.99
0.152(7)
0.207
0.31(1)
0.493(14)
0.16(2)
32/16
Large order behavior
• d=2 and 4 are critical points
free gas 2
3
4
r0≠0
• Critical exponents of O(n=1) 4 theory (e=4-d  1)
g
O(1)
+e1
+e2
+e3
+e4
+e5
Lattice
1
1.167
1.244
1.195
1.338
0.892
1.239(3)
• Borel transform with conformal mapping
g=1.23550.0050
• Boundary condition (exact value at d=2)
g=1.23800.0050
e expansion is asymptotic series but works well !