Fuel Choice Study Results Michael Schilmoeller and Tom Eckman Northwest Power and Conservation Council WebCast Friday, March 18, 2011
Download ReportTranscript Fuel Choice Study Results Michael Schilmoeller and Tom Eckman Northwest Power and Conservation Council WebCast Friday, March 18, 2011
Fuel Choice Study Results Michael Schilmoeller and Tom Eckman Northwest Power and Conservation Council WebCast Friday, March 18, 2011 1 Overview • Study approach • Interpreting the RPM results • Next Steps 2 Study Approach • Basic concepts • Data preparation for the RPM • The simulation – Representation of segment group “classes” based on energy profiles – How the model tries to find “the best” policy with respect to appliance choice • RPM results 3 Premise of the Study • As a space heater is nearing the end of its life, a customer considers alternatives for replacement • Some decision maker (probably not the customer) makes their best guess about future natural gas and electricity prices, about future carbon mitigation policies, and so forth. They want to minimize total societal cost (“total resource cost” or TRC). • The customer, somehow influenced by the policy maker’s decision, buys and installs the appliance(s). • Their actual cost depends on whatever carbon penalty, and natural gas and electricity prices occur. 4 New Segment Groups Existing System Space Water Heating Heating (SH) (WH) FAF Electric Electric Resistance FAF Electric Gas Tank Gas FAF Electric Resistance Gas FAF Gas Tank Heat Pump Electric Resistance Heat Pump Gas Tank Zonal Electric Electric Resistance Zonal Electric Gas Tank Grand Total 5 Segment groups 20 10 10 10 10 5 20 10 95 20 New Segment Groups Basement Gas Availability Air Conditioning Existing WH Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Household Existing SH FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric Water heater size Associated with FAF Electric and Electric DHW X<55 X<55 X<55 X<55 X>=55 X>=55 X>=55 X>=55 X<55 X<55 X<55 X<55 X>=55 X>=55 X>=55 X>=55 X<55 X<55 X<55 X<55 SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF MF MF MF MF No No No No No No No No Yes Yes Yes Yes Yes Yes Yes Yes No No No No E E M M E E M M E E M M E E M M E E M M No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes Determine retrofit baseline Retro SH FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric Retro WH Electric Resistance Electric Resistance Electric Resistance Electric Resistance HPWH HPWH HPWH HPWH Electric Resistance Electric Resistance Electric Resistance Electric Resistance HPWH HPWH HPWH HPWH Electric Resistance Electric Resistance Electric Resistance Electric Resistance source: C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110104 DUG RTF\[New Segment Groups 110104.xlsm]Illustration 2 6 New Segments HPWH Instant Gas Condensing Gas Electric Resistance Gas Tank HPWH Instant Gas Condensing Gas Electric Resistance Gas Tank HPWH Instant Gas Condensing Gas Grand Total Gas Tank 20 10 20 10 12 6 12 6 20 10 20 10 20 10 12 6 12 6 20 10 20 10 20 10 12 6 12 6 20 10 20 10 20 10 336 168 6 6 6 6 10 10 10 10 10 10 6 6 6 6 10 10 10 10 10 10 6 6 6 6 10 10 10 10 10 10 6 6 6 6 10 10 10 10 10 10 168 168 6 3 6 3 10 5 10 5 10 5 6 3 6 3 10 5 10 5 10 5 6 3 6 3 10 5 10 5 10 5 6 3 6 3 10 5 10 5 10 5 168 84 65 12 6 57 12 6 57 20 10 95 20 10 95 20 10 95 65 12 6 57 12 6 57 20 10 95 20 10 95 20 10 95 Condensing Gas Electric Resistance 20 10 Instant Gas Condensing Gas 12 6 HPWH Instant Gas 12 6 Gas Tank HPWH Electric Resistance Ductless HP Zonal Electric Heat Pump Gas Tank water heating Electric Resistance space heating Gas FAF FAF Electric Retrofit systems Existing system FAF Electric Electric Resistance Gas Tank Gas FAF Electric Resistance Gas Tank Heat Pump Electric Resistance Gas Tank Zonal Electric Electric Resistance Gas Tank Grand Total source: 39 39 65 65 39 39 65 65 12 6 18 12 6 18 20 10 30 20 10 30 20 252 10 126 30 1470 C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110104 DUG RTF\[New Segment Groups 110104.xlsm]all segments - count 7 20 segments Associated with Basement Gas Availability Air Conditioning Existing WH Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Electric Resistance Household Existing SH FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric FAF Electric → Gas FAF Electric and Instant Gas DHW Water heater size Electric FAF and Electric DHW X<55 X<55 X<55 X<55 X<55 X<55 X<55 X<55 X<55 X<55 X<55 X<55 X>=55 X>=55 X>=55 X>=55 X>=55 X>=55 X>=55 X>=55 MF MF MF MF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF SF No No No No No No No No Yes Yes Yes Yes No No No No Yes Yes Yes Yes E E M M E E M M E E M M E E M M E E M M No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes No Yes Retro SH Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Gas FAF Retro WH Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas Instant Gas source: C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110104 DUG RTF\[New Segment Groups 110104.xlsm]Illustration 2 8 (Gas FAF, Gas Tank) to (Gas FAF, Gas Tank), X<=55, SF, No, Existing, No Segment 43, Pop. 19360 Electricity Perspective (Gas price fixed at 8 $/MMBTU) 3,500 Translation: The existing appliances are a gas forced air furnace (FAF) and gas water heater with a tank 2,500 holding no more than 55 gallons. The single family structure has no basement, existing gas service, and 2,000 no air conditioning. 2006$/year/household 3,000 (Gas FAF, Gas Tank) (Electric Zonal, Electric Resistance) (Gas FAF, HPWH) The 1,500 default retrofit for this segment group is replacement in kind (gas forced air furnace and water heater). C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110318 RTF Webinar - First results\illustrations\FCM 08 XSN for illustrations.xlsm 1,000 500 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 Electricity price ($/MWh) 9 (Gas FAF, Gas Tank) to (Gas FAF, Gas Tank), X<=55, SF, No, Existing, No Segment 43, Pop. 19360 Electricity Perspective (Gas FAF, Gas Tank) (Gas price fixed at 8 $/MMBTU) 3,500 (Electric FAF, Electric Resistance) (Electric FAF, HPWH) 3,000 (Electric FAF, Gas Tank) C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110318 RTF Webinar - First results\illustrations\FCM 08 XSN for illustrations.xlsm 2,500 (Electric FAF, Instant Gas) (Electric FAF, Condensing Gas) 2006$/year/household (Heat Pump, Electric Resistance) (Heat Pump, HPWH) 2,000 (Heat Pump, Gas Tank) (Heat Pump, Instant Gas) (Heat Pump, Condensing Gas) 1,500 (Electric Zonal, Electric Resistance) (Electric Zonal, HPWH) (Electric Zonal, Gas Tank) 1,000 (Electric Zonal, Instant Gas) (Electric Zonal, Condensing Gas) 500 (Gas FAF, Electric Resistance) (Gas FAF, HPWH) (Gas FAF, Instant Gas) 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 (Gas FAF, Condensing Gas) Source: Q:\MS\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110303 P4 Web\[FCM 05 for illustrations.xlsm]Screening Curves Electricity price ($/MWh) 10 (Gas FAF, Gas Tank) to (Gas FAF, Gas Tank), X<=55, SF, No, Existing, No Segment 43, Pop. 19360 Gas Perspective (Gas FAF, Gas Tank) (Electric price fixed at 50 $/MWh) 3,500 (Electric FAF, Electric Resistance) (Electric FAF, HPWH) 3,000 C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110318 RTF Webinar - First results\illustrations\FCM 08 XSN for illustrations.xlsm 2,500 (Electric FAF, Gas Tank) (Electric FAF, Instant Gas) (Electric FAF, Condensing Gas) 2006$/year/household (Heat Pump, Electric Resistance) (Heat Pump, HPWH) 2,000 (Heat Pump, Gas Tank) (Heat Pump, Instant Gas) (Heat Pump, Condensing Gas) 1,500 (Electric Zonal, Electric Resistance) (Electric Zonal, HPWH) (Electric Zonal, Gas Tank) 1,000 (Electric Zonal, Instant Gas) (Electric Zonal, Condensing Gas) 500 (Gas FAF, Electric Resistance) (Gas FAF, HPWH) (Gas FAF, Instant Gas) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Natural gas price ($/MMBTU) 11 14 15 16 17 18 (Gas FAF, Condensing Gas) Table of Least-Cost Choices Least-cost Segments for SegmentGroup * 43 *, annual households: 19360, segment group (Gas FAF, Gas Tank) to (Gas FAF, Electricity Price (2006$/MWh) Gas Price (2006$/MMBTU) 0 10 20 30 40 50 60 70 80 90 0 724 724 -1 -1 -1 -1 -1 -1 -1 -1 1 724 724 -1 -1 -1 -1 -1 -1 -1 -1 2 724 724 724 -1 -1 -1 -1 -1 -1 -1 3 724 724 724 -1 -1 -1 -1 -1 -1 -1 4 724 724 724 724 -1 -1 -1 -1 -1 -1 5 724 724 724 724 -1 -1 -1 -1 -1 -1 6 724 724 724 724 724 -1 -1 -1 -1 -1 7 724 724 724 724 724 730 -1 -1 -1 -1 8 724 724 724 724 724 730 730 -1 -1 -1 9 724 724 724 724 724 725 730 730 -1 -1 10 724 724 724 724 724 725 730 730 730 -1 11 724 724 724 724 724 725 725 730 730 732 12 724 724 724 724 724 725 725 730 730 730 13 724 724 724 724 724 725 725 725 730 730 14 724 724 724 724 724 725 725 725 730 730 15 724 724 724 724 724 725 725 725 730 730 16 724 724 724 724 724 725 725 725 725 730 17 724 724 724 724 724 725 725 725 725 730 18 724 724 724 724 724 725 725 725 725 725 19 724 724 724 724 724 725 725 725 725 725 20 724 724 724 724 724 725 725 725 725 725 30 724 724 724 724 724 725 725 725 725 725 40 724 724 724 724 724 725 725 725 725 725 50 724 724 724 724 724 725 725 725 725 725 60 724 724 724 724 724 725 725 725 725 725 -1 (Gas FAF, Gas Tank) - Replacement in Kind 720 (Heat Pump, HPWH) 724 (Electric Zonal, Electric Resistance) 725 (Electric Zonal, HPWH) 730 (Gas FAF, HPWH) 732 (Gas FAF, Condensing Gas) 12 Gas Tank), X<=55, SF, No, Existing, No 100 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 730 730 730 730 730 730 730 725 725 725 725 725 110 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 732 732 730 730 730 730 730 725 725 725 725 725 120 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 732 732 732 730 730 730 730 730 725 725 725 725 130 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 732 732 732 732 732 730 730 730 725 725 725 725 140 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 732 732 732 732 732 732 732 730 725 725 725 725 Tables Not Shown There are nine other 25 x 25 tables used to describe segment group 43. These are incremental* changes in • • • • fixed costs ($/hr) natural gas use (MMBTU/h) electricity use (MWh/h) electric energy (MWh/h) one for each of six profiles * These are incremental in two ways: they reflect how much can be added in the model’s decision time period (standard quarter) and how different from the assumed replacement-in-kind values. That is, if replacement-inkind is the least-cost option for a given gas and power price, the entry corresponding to that combination is zero in all tables. 13 Energy Distributions • On- and off-peak distribution of energy • Seasonal distribution • Five principal distributions – Model will carry along electric energy assumptions and results data for each one 14 Roll-Up • The RPM uses 10 “roll-up” tables representing sums across the 95 segment groups • If the selection criterion is based solely on electricity and natural gas price, we can come back and “drill down” into results by segment group to see the detailed conversion behavior. This assumes, of course, a fixed appliance selection policy. 15 Simulation Direct Use of Gas Seasonal shape 0 - flat Seasonal shape 1 - elc tank Seasonal shape 2 - A/C Seasonal shape 3 - Heat Pumps Seasonal shape 4 - elc FAF Seasonal shape 5 - elc zonal off-peak (FP) Seasonal shape 0 - flat Seasonal shape 1 - elc tank Seasonal shape 2 - A/C Seasonal shape 3 - Heat Pumps Seasonal shape 4 - elc FAF Seasonal shape 5 - elc zonal Natural gas price market adder ($/MMBTU) $ Carbon penalty adjustment to gas price ($/MMBTU) $ adjusted criterion gas price ($/MMBTU) $ New Fixed Cost ($/h) Total Cost ($/h) NG Energy(MMBTU/h) Total Electric Energy (MWh/h) Electric Energy (MWh/h) - Profile 0 Electric Energy (MWh/h) - Profile 1 Electric Energy (MWh/h) - Profile 2 Electric Energy (MWh/h) - Profile 3 Electric Energy (MWh/h) - Profile 4 Electric Energy (MWh/h) - Profile 5 Direct NG CO2 (tons) Electric Energy NP (MWh) Electricity Cost NP ($M) NG Cost ($M) Fixed Cost ($M) Total Non-Power Cost ($M) on-peak (NP) 1.07403737 1.000 1.159 0.941 0.973 0.962 0.851 1.000 0.682 0.520 0.723 0.694 0.690 (9.00) $ (4.00) $ 14.9 -90.0 16.5 -3.2 0.0 -2.3 0.1 -1.4 -2.2 2.5 1944.9 -4438.8 -0.1 0.1 0.0 0.1 16 1.000 1.373 0.000 1.978 2.382 2.230 1.000 0.820 0.000 1.932 1.823 1.984 1.000 1.239 0.257 0.817 1.084 1.094 1.000 0.778 0.183 0.837 0.871 0.999 1.000 1.052 3.732 0.426 0.073 0.077 1.000 0.702 2.049 0.311 0.050 0.066 1.000 1.159 0.941 0.973 0.962 0.851 1.000 0.682 0.520 0.723 0.694 0.690 $ (4.70) $ 29.7 -179.9 33.0 -6.5 0.0 -4.5 0.2 -2.8 -4.4 5.1 3889.8 -12584.4 -0.5 0.4 0.1 0.4 $ (4.20) $ 44.6 -269.9 49.5 -9.7 0.0 -6.8 0.3 -4.2 -6.6 7.6 5834.7 -12228.5 -0.4 0.5 0.1 0.6 $ (4.23) $ 59.5 -359.8 66.0 -12.9 -0.1 -9.0 0.4 -5.6 -8.8 10.2 7779.6 -11808.0 -0.2 0.7 0.1 0.9 $ (4.06) $ 74.4 -449.8 82.5 -16.2 -0.1 -11.3 0.5 -7.0 -11.0 12.7 9724.5 -22194.1 -0.9 1.0 0.1 1.1 1.000 1.373 0.000 1.978 2.382 2.230 1.000 0.820 0.000 1.932 1.823 1.984 (3.92) 89.2 -539.8 98.9 -19.4 -0.1 -13.6 0.6 -8.4 -13.2 15.3 11669.4 -37753.1 -1.6 1.2 0.2 1.4 The Selector • The RPM “plan optimizer” needs knobs it can tweak to test appliance pair selection • The selection is an event that occurs over and over as the simulation marches chronologically through each future. (Remember, RPM plan and policy decisions cannot know the future.) • The rule for appliance selection can be anything – The test is, “Does it work?” (i.e., lower cost or risk) – Need not be tied to economics, although that is what we think most policy makers would use. 17 The Selector • There are many ways to do this, for example, – Changing relative fixed cost of appliances in the selection process – Letting the optimizer test every option for each segment group and tracking • If the decision is influenced by perceptions of likely future economics, let’s use that • We already model electricity and gas price uncertainty • Use the “diagonal” nature of the typical boundary between gas and electric appliances 18 C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\101004 Study\FCM 05.xlsm 19 20 Show the L814e and L814d selector Feasibility Spaces L814d- DUG optimized vs L814e - DUG premium = 0 135000 133000 Risk (NPV $2006 M) 131000 C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\Presentations\110304 Staff - First results\Comparison of L814d and L814e.xlsm L814d L814d frontier L814e 129000 L814e frontier 127000 125000 123000 121000 119000 75000 77000 79000 81000 Cost (NPV $2006 M) 21 83000 L814d Plansselector Colored By DUG Premium Level L814d Colored By DUG Selector Value 149000 Risk (NPV $2006 M) 144000 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 139000 134000 129000 124000 119000 75000 80000 85000 90000 Cost (NPV $2006 M) F:\Backups\Plan 6\Studies\L814\L814d DUG 110125\Analysis\[L814d DUG at plan 4541 colored by DUG premium.xlsm]Coloring 22 Total Study Costs (Mean) TailVaR90 Plan Comparisons 1,134 0 0 0 0 0 0 0 78926.5 756 0 0 0 0 0 162 162 78957.1 3,402 0 0 0 0 0 0 0 80364.1 3,402 0 0 0 0 0 0 0 80594.0 756 0 0 0 0 162 162 162 78965.2 3,024 0 0 0 0 0 0 0 80386.6 3,024 0 0 0 0 0 0 0 80454.1 7,560 162 162 648 648 1620 1620 1620 83805.2 3,402 0 0 0 0 162 162 162 80626.6 129292.6 129135.0 127503.6 127497.7 129136.3 127510.6 127509.3 135323.7 127503.2 CCCT_CY_Dec13 CCCT_CY_Dec15 CCCT_CY_Dec17 CCCT_CY_Dec19 CCCT_CY_Dec21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 756 756 3,402 3,402 756 3,024 3,024 3,402 756 756 3,402 3,402 756 3,024 3,024 3,402 23 SCCT_CY_Dec23 CCCT_CY_Dec09 1 1 1 1 1 1 1 4 1 SCCT_CY_Dec21 DRIN 1 1 1 1 1 1 1 4 1 SCCT_CY_Dec19 DRAG 1 1 1 1 1 1 1 4 1 SCCT_CY_Dec17 DRSH 1 1 1 1 1 1 1 1 1 SCCT_CY_Dec15 DRAC 50 90 100 100 90 90 100 0 100 SCCT_CY_Dec13 Cnsrvn_Dispatchable 20 20 60 70 20 70 70 0 70 SCCT_CY_Dec09 Cnsrvn_Lost Opportunity 6142 6843 1175 2234 6700 2393 1488 3605 2392 CCCT_CY_Dec23 Sim selector fixed at zero L814e - DUG premium 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 1134 972 1134 1620 972 1296 1134 648 1458 1134 -7 1134 -7 1134 -10 1620 -9 972 -6 1296 -9 1134 -9 648 10 1458 -10 76242.7 76297.0 77969.7 78405.1 76399.5 77859.2 77833.5 86735.2 78732.1 TailVaR90 Total Study Costs (Mean) DUG_ngp_premium SCCT_CY_Dec23 SCCT_CY_Dec21 SCCT_CY_Dec19 SCCT_CY_Dec17 0 0 0 0 0 1134 0 0 0 0 0 972 378 0 0 0 0 972 378 0 0 0 0 1620 378 0 0 0 0 648 378 0 0 0 0 1296 378 0 0 0 0 810 0 162 162 648 648 648 378 0 0 0 0 1458 SCCT_CY_Dec15 0 0 378 378 378 378 378 0 378 SCCT_CY_Dec13 0 0 378 378 378 378 378 0 378 SCCT_CY_Dec09 CCCT_CY_Dec23 0 0 0 0 0 0 0 0 0 CCCT_CY_Dec21 0 0 0 0 0 0 0 0 0 CCCT_CY_Dec19 1 1 1 1 1 1 1 4 1 CCCT_CY_Dec17 1 1 1 1 1 1 1 1 1 CCCT_CY_Dec15 1 1 1 1 1 1 1 4 1 CCCT_CY_Dec13 DRIN 1 1 1 1 1 1 1 1 1 CCCT_CY_Dec09 DRAG 30 50 80 100 40 80 80 0 90 DRSH 20 20 50 60 30 50 50 0 70 L814d - DUG selector premium optimized DRAC Cnsrvn_Dispatchable 4386 4485 592 189 4501 272 628 1984 36 Cnsrvn_Lost Opportunity Sim Plan Comparisons 120798.1 120755.3 119700.1 119660.3 120666.8 119709.5 119706.6 147671.8 119679.0 (Gas FAF, Gas Tank) to (Gas FAF, Gas Tank), X<=55, SF, No, Existing, No Segment Group 43 with no selection adjustment 100% 90% (Gas FAF, Condensing Gas) 80% 70% (Gas FAF, HPWH) 60% (Gas FAF, Electric Resistance) 50% 40% (Heat Pump, HPWH) 30% 20% (Electric FAF, HPWH) 10% (Electric FAF, Electric Resistance) (Gas FAF, Gas Tank) Sep-28 Sep-27 Sep-26 Sep-25 Sep-24 Sep-23 Sep-22 Sep-21 Sep-20 Sep-19 Sep-18 Sep-17 Sep-16 Sep-15 Sep-14 Sep-13 Sep-12 Sep-11 Sep-10 Sep-09 0% (Gas FAF, Gas Tank) to (Gas FAF, Gas Tank), X<=55, SF, No, Existing, No Segment Group 43 with -9 selection adjustment (Gas FAF, Condensing Gas) 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% (Gas FAF, HPWH) (Gas FAF, Electric Resistance) (Electric FAF, HPWH) May-28 Mar-27 (Gas FAF, Gas Tank) Jan-26 Nov-24 Sep-23 Jul-22 May-21 Mar-20 Jan-19 Nov-17 Sep-16 Jul-15 May-14 Mar-13 Jan-12 Nov-10 Sep-09 (Electric FAF, Electric Resistance) 25 Effect of the Selector on the Move to Gas Overview • Study approach • Interpreting the RPM results • Next Steps 26 System Effects Operating (Fuel) Costs GAS TANK 70% EFF COMBUSTION TURBINE 48% EFF (7100 BTU/kWh) ELEC TANK 93% EFF 27 System Effects Operating (Fuel) Costs • The higher thermal efficiency of the natural gas appliance has several important implications to operating cost – The operating cost of the gas appliance will always be lower, regardless of the price of electricity and of natural gas – The gas appliance will produce less CO2, unless additional carbon capture technologies are introduced 28 System Effects How Conservative is Use of Turbine Costs? • Non-dispatchable resources and resources with very low variable cost (hydrogeneration) are (almost*) never on the margin in the long-term • Consequently, changes to electric load affect dispatchable, fossil-fuel resources • This places a lower limit on the generation efficiencies in the previous slide *Ok, ok, system operation can produce some additional amount of hydrogeneration spill. Hopefully, this is rare and of little long-term consequence. 29 System Effects Fixed Costs per Year assuming same end-use energy Gas Extension (MF) $183.59/yr, RL 2006$ Gas Main (MF) $373.30/yr, RL 2006$ $125.02/yr, RL 2006$ Average BTU/h= 1.90 $74.69 /yr, RL 2006$ $/yr=($/kWyr)*(kW), and $/kWyr = 195 RL $79.74/yr, RL 2006$, Average kW=0.38 Average BTU/h= 1.30 30 No Systems Effect Least-cost Segments for SegmentGroup * 43 *, annual households: 19360, segment group (Gas FAF, Gas Tank) to (Gas FAF, Gas Tank), X<=55, SF, No, Existing, No Gas Price (2006$/MMBTU) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 40 50 60 Electricity Price (2006$/MWh) 0 10 20 724 724 -1 724 724 -1 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 -1 (Gas FAF, Gas Tank) - Replacement in Kind 720 (Heat Pump, HPWH) 724 (Electric Zonal, Electric Resistance) 30 -1 -1 -1 -1 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 40 -1 -1 -1 -1 -1 -1 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 724 50 -1 -1 -1 -1 -1 -1 -1 730 730 725 725 725 725 725 725 725 725 725 725 725 725 725 725 725 725 60 -1 -1 -1 -1 -1 -1 -1 -1 730 730 730 725 725 725 725 725 725 725 725 725 725 725 725 725 725 725 (Electric Zonal, HPWH) 730 (Gas FAF, HPWH) 732 (Gas FAF, Condensing Gas) 31 70 -1 -1 -1 -1 -1 -1 -1 -1 -1 730 730 730 730 725 725 725 725 725 725 725 725 725 725 725 725 80 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 730 730 730 730 730 730 725 725 725 725 725 725 725 725 725 90 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 730 730 730 730 730 730 725 725 725 725 725 725 725 100 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 730 730 730 730 730 730 730 725 725 725 725 725 110 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 732 732 730 730 730 730 730 725 725 725 725 725 Turbine operating cost Least-cost Segments for SegmentGroup * 43 *, annual households: 19360, segment group (Gas FAF, Gas Tank) to (Gas FAF, Electricity Price (2006$/MWh) Gas Price (2006$/MMBTU) 0 10 20 30 40 50 60 70 80 90 0 724 724 724 724 724 724 724 724 724 724 1 724 724 724 724 724 724 724 724 724 724 2 724 724 724 724 724 724 724 724 724 724 3 724 724 724 724 724 724 724 724 724 724 4 724 724 724 724 724 724 724 724 724 724 5 724 724 724 724 724 724 724 724 724 724 6 729 729 729 729 729 729 729 729 729 729 7 730 730 730 730 730 730 730 730 730 730 8 730 730 730 730 730 730 730 730 730 730 9 730 730 730 730 730 730 730 730 730 730 10 730 730 730 730 730 730 730 730 730 730 11 730 730 730 730 730 730 730 730 730 730 12 730 730 730 730 730 730 730 730 730 730 13 730 730 730 730 730 730 730 730 730 730 14 730 730 730 730 730 730 730 730 730 730 15 730 730 730 730 730 730 730 730 730 730 16 730 730 730 730 730 730 730 730 730 730 17 730 730 730 730 730 730 730 730 730 730 18 730 730 730 730 730 730 730 730 730 730 19 730 730 730 730 730 730 730 730 730 730 20 730 730 730 730 730 730 730 730 730 730 30 732 732 732 732 732 732 732 732 732 732 40 732 732 732 732 732 732 732 732 732 732 50 732 732 732 732 732 732 732 732 732 732 60 732 732 732 732 732 732 732 732 732 732 The likelihood of carbon penalties and curtailed coal plant production make these prices unlikely in the next decade. These are all heat pump water heaters with gas FAF. -1 (Gas FAF, Gas Tank) - Replacement in Kind 720 (Heat Pump, HPWH) 724 (Electric Zonal, Electric Resistance) 725 (Electric Zonal, HPWH) 730 (Gas FAF, HPWH) 732 (Gas FAF, Condensing Gas) 32 Gas Tank), X<=55, 100 724 724 724 724 724 724 729 730 730 730 730 730 730 730 730 730 730 730 730 730 730 732 732 732 732 110 724 724 724 724 724 724 729 730 730 730 730 730 730 730 730 730 730 730 730 730 730 732 732 732 732 Turbine Operating and Fixed Cost Least-cost Segments for SegmentGroup * 43 *, annual households: 19360, segment group (Gas FAF, Gas Tank) to (Gas FAF, Electricity Price (2006$/MWh) Gas Price (2006$/MMBTU) 0 10 20 30 40 50 60 70 80 90 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 4 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 5 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 7 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 8 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 10 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 11 732 732 732 732 732 732 732 732 732 732 12 732 732 732 732 732 732 732 732 732 732 13 732 732 732 732 732 732 732 732 732 732 14 732 732 732 732 732 732 732 732 732 732 15 732 732 732 732 732 732 732 732 732 732 16 732 732 732 732 732 732 732 732 732 732 17 732 732 732 732 732 732 732 732 732 732 18 732 732 732 732 732 732 732 732 732 732 19 732 732 732 732 732 732 732 732 732 732 20 732 732 732 732 732 732 732 732 732 732 30 732 732 732 732 732 732 732 732 732 732 40 732 732 732 732 732 732 732 732 732 732 50 732 732 732 732 732 732 732 732 732 732 60 732 732 732 732 732 732 732 732 732 732 -1 (Gas FAF, Gas Tank) - Replacement in Kind 720 (Heat Pump, HPWH) 724 (Electric Zonal, Electric Resistance) 725 (Electric Zonal, HPWH) 730 (Gas FAF, HPWH) 732 (Gas FAF, Condensing Gas) 33 Gas Tank), X<=55, 100 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 732 732 732 732 732 732 732 732 732 732 732 732 110 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 732 732 732 732 732 732 732 732 732 732 732 732 732 732 Preliminary Observations (to be disavowed if attributed) • The initial RPM selection probably got over 75% of the 130,000 per year of households correct: – Homes with gas appliances that might otherwise move to electric appliances (50,000+ per year) should stay with gas appliances (NEW FINDING), but … • If we do not expect to displace future generation turbines then electric heat pump water heaters may be better than gas water heating appliances. (Work forthcoming….) – Small, multi-family households in areas that would require a gas main are probably best served with electric zonal space heating and resistance hot water tanks • The “best plan” selector value did not change this outcome 34 Preliminary Observations (to be disavowed if attributed) • Where the initial selection criterion probably got it wrong: – Some households were converted to gas when, in fact, they would have been best served by electric appliances • Larger single-family homes (26,000 per year) requiring gas mains – Some households were converted to gas, although the best outcome will depend on displacing new turbines in the future • CO2 emissions were about the same, irrespective of the conversions 35 CO2Avg2025 wT: Mean 25.5 25.5 23.7 23.5 25.1 23.8 23.8 32.9 23.3 CO2Avg2030 wT: Mean 26.9 26.6 23.9 23.4 26.2 24.0 24.0 35.9 23.2 CO2Avg2030 woT: Mean 36.1 35.9 34.7 34.4 35.6 34.7 34.7 38.0 34.3 CO2Avg2025 woT: Mean CO2Avg2025 wT: Mean 120798.1 120755.3 119700.1 119660.3 120666.8 119709.5 119706.6 147671.8 119679.0 TailVaR90 CO2Avg2030 wT: Mean 76242.7 76297.0 77969.7 78405.1 76399.5 77859.2 77833.5 86735.2 78732.1 TailVaR90 Sim 4386 4485 592 189 4501 272 628 1984 36 Total Study Costs (Mean) CO2Avg2030 woT: Mean 34.7 34.7 33.9 33.8 34.4 33.9 33.9 36.2 33.7 selector L814d - DUG premium 78926.5 78957.1 80364.1 80594.0 78965.2 80386.6 80454.1 83805.2 80626.6 129292.6 129135.0 127503.6 127497.7 129136.3 127510.6 127509.3 135323.7 127503.2 34.9 34.8 33.9 33.8 34.8 33.8 33.8 35.8 33.8 36.2 36.0 34.5 34.4 36.0 34.5 34.5 36.1 34.4 30.2 29.8 27.1 26.9 29.8 27.1 27.0 31.6 26.9 28.8 28.8 26.8 26.7 28.8 26.7 26.7 30.5 26.7 L814e - DUG premium selector fixed at zero Sim CO2Avg2025 woT: Mean Total Study Costs (Mean) CO2 Emissions 6142 6843 1175 2234 6700 2393 1488 3605 2392 36 Overview • Study approach • Interpreting the RPM results • Next Steps 37 Remaining Work and Questions • We will try an alternative selection method that provides the optimizer with better granularity: – Lock down selections that we feel are pretty stable – Aggregate segment groups that appear to be sensitive to similar issues, such as opportunity to defer new turbines – Provide the optimizer several knobs for picking the best outcomes for each aggregate group • Are there load forecast implications we have not considered? How closely does our underlying load forecast match our replacement-in-kind values? 38 Remaining Work and Questions • What will be the impact of revised conservation supply curves? – These currently assume a specific replacement policy • Conversion to more efficient electric appliances introduces double-counting • Conversion to gas removes the opportunity entirely – This will result in some take-back of benefits of remaining on or converting to natural gas • Would alternative market-purchase power carbon loading assumptions change the results? • What are the oxides of nitrogen emission implications? – The only emission we valued was CO2 39 Remaining Work and Questions • What are the current impediments and incentives for modifying consumer behavior? – Retail rate structure – Tax deductions and credits • How well aligned are these with the least-cost and risk choices we have identified? • How well is the market doing? 40 Questions? 41 42 Reserve Slides 43 Power Distribution for Domestic Hot Water 1.20 WEEKDAY WEEKEND 1.00 0.80 0.60 0.40 0.20 0.00 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 44 Power Distribution for Domestic Hot Water Average onpeak requirement to off-peak* requirement: 0.6 0.5 0.4 0.3 1.93 0.2 *Sunday is all off-peak 0.1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 Hour of the Day (Monday in January) C:\Backups\Plan 6\Studies\Model Development\Direct Use of Gas\101004 Study\hourly_res_loads\[Residential Water Heating load shapes and hourly consumptions sent to KC on Dec 30 2008_MJS.xlsx]DWH 45 Energy Distributions Sapce Heating - Heat Pumps Megawatts (MW) per subperiod per MW-yr Fall Win Sp Sum on-peak power 0.973 1.978 0.817 0.426 off-peak power 0.723 1.932 0.837 0.311 Water Heating - Electric Tank Megawatts (MW) per subperiod per MW-yr Fall Win Sp Sum on-peak power 1.159 1.373 1.239 1.052 off-peak power 0.682 0.820 0.778 0.702 Space Heating - Electric FAF Megawatts (MW) per subperiod per MW-yr Fall Win Sp Sum on-peak power 0.962 2.382 1.084 0.073 off-peak power 0.694 1.823 0.871 0.050 Air Conditioning Space Heating - Electric Zonal Megawatts (MW) per subperiod per MW-yr Fall Win Sp Sum on-peak power 0.851 2.230 1.094 0.077 off-peak power 0.690 1.984 0.999 0.066 source: worksheet illustrations, workbook "FCM 01.xlsm" Megawatts (MW) per subperiod per MW-yr Fall Win Sp Sum on-peak power 0.941 0.000 0.257 3.732 off-peak power 0.520 0.000 0.183 2.049 Winter water heating on- to off-peak ratio: 1.70 (=1.373/.0820) 46 Average MWh/h Increase Across Futures MWh/h MWh/h With no adder sorted by change With no adder cumulative With -9 adder With -9 adder difference perc cumulative Output_01!CF7568 (0.9) (0.40) (0.46) Output_43!CF7568 1.3 338.7 (337.4) (337.4) 20.0% 43 Output_02!CF7568 (0.2) (0.10) (0.12) Output_45!CF7568 1.0 227.2 (226.1) (563.5) 33.4% 45 Output_03!CF7568 (0.8) (0.59) (0.22) Output_33!CF7568 (73.9) 87.2 (161.1) (724.6) 42.9% 33 Output_04!CF7568 (0.2) (0.15) (0.06) Output_35!CF7568 (54.3) 66.5 (120.9) (845.5) 50.1% 35 Output_05!CF7568 (56.2) (15.14) (41.04) Output_44!CF7568 0.4 101.3 (100.9) (946.4) 56.0% 44 Output_06!CF7568 (22.4) (6.03) (16.36) Output_07!CF7568 (70.2) (13.9) (56.3) (1,002.6) 59.4% 07 Output_07!CF7568 (70.2) (13.90) (56.26) Output_70!CF7568 (68.6) (15.5) (53.1) (1,055.7) 62.5% 70 These values represent the average MWa (28.0) for each segment over all futuresOutput_46!CF7568 in Output_08!CF7568 (5.54) group (22.43) 0.2 50.6 (50.4) (1,106.1) 65.5% 46 the last period of the study. For example, Output_01!CF7568 the average for Output_72!CF7568 Output_09!CF7568 (27.2) (6.83) is(20.38) (66.2) (19.0) (47.3) (1,153.4) 68.3% 72 segment group Output_10!CF7568 1, and CF7568 references a(13.0) cell containing (3.26)this average. (9.71) (The Output_36!CF7568 (18.6) 22.8 (41.5) (1,194.8) 70.8% 36 (27.7) (7.75) Development\Direct (19.95) Output_05!CF7568 (56.2) (15.1) (41.0) (1,235.9) 73.2% 05 sources of theseOutput_11!CF7568 figures are "Q:\MS\Plan 6\Studies\Model Use Output_12!CF7568 L814d effort\L814d_PP02 (13.2) (3.70) saved.xlsm" (9.50) (17.9) 21.2 (39.1) (1,274.9) 75.5% 34 of Gas\RPM Postprocessor\110215 for theOutput_34!CF7568 -9 Output_13!CF7568 (1.07) 2.3 30.0 (27.7) (1,302.6) 77.1% 47 adder case and "L814d_PP02B saved+.xlsm"(3.8) in the same location(2.71) for the 0 adder Output_47!CF7568 Output_14!CF7568 (1.5) (0.43) (1.08) Output_74!CF7568 (33.7) (7.1) (26.5) (1,329.1) 78.7% 74 case.) Output_15!CF7568 (4.6) (0.70) (3.93) Output_76!CF7568 (32.3) (7.6) (24.7) (1,353.8) 80.2% 76 Output_16!CF7568 (0.28) (1.57) (28.0) (5.5) (22.4) (1,376.2) 81.5% 08 The "adder" in this case increases natural gas(1.8) price and decreases the electricity Output_08!CF7568 Output_17!CF7568 (1.8) (0.46) (1.37) Output_09!CF7568 (27.2) (6.8) (20.4) (1,396.6) 82.7% 09 price USED FOR THE DECISION CRITERION ONLY. For example, the -9 adder Output_18!CF7568 (0.9) (0.22) (0.65) Output_11!CF7568 (27.7) (7.8) (19.9) (1,416.6) 83.9% 11 referenced in these tables decreases natural gas by $9/MMBTU and increases Output_19!CF7568 (1.8) (0.43) (1.34) Output_53!CF7568 (14.4) 5.2 (19.6) (1,436.2) 85.1% 53 electricity prices by $9/MWh. (For reasons related to the relative energy content of Output_20!CF7568 (0.8) (0.21) (0.64) Output_49!CF7568 1.5 20.1 (18.6) (1,454.8) 86.2% 49 BTUs and MWhs, I am using the same nominal value to adjust both of these. The Output_21!CF7568 (0.2) 0.39 (0.58) Output_06!CF7568 (22.4) (6.0) (16.4) (1,471.1) 87.1% 06 reasons are notOutput_22!CF7568 obvious.) The source of the(0.0) adder is RPM analysis. 0.01 (0.02) Output_54!CF7568 (6.1) 9.8 (15.9) (1,487.1) 88.1% 54 Output_23!CF7568 (6.4) (2.22) (4.13) Output_37!CF7568 (2.5) 10.7 (13.2) (1,500.3) 88.8% 37 Output_24!CF7568 (0.3) (0.11) (0.21) Output_56!CF7568 (10.6) 2.2 (12.8) (1,513.1) 89.6% 56 Output_25!CF7568 (2.0) (0.54) (1.42) Output_55!CF7568 (10.9) 0.7 (11.6) (1,524.6) 90.3% 55 Output_26!CF7568 (0.7) (0.20) (0.54) Output_71!CF7568 (14.5) (3.3) (11.2) (1,535.9) 91.0% 71 Output_27!CF7568 (0.6) (0.25) (0.34) Output_73!CF7568 (14.0) (4.0) (10.0) (1,545.9) 91.5% 73 Output_28!CF7568 (0.0) (0.01) (0.02) Output_39!CF7568 (1.8) 8.1 (9.9) (1,555.8) 92.1% 39 Output_29!CF7568 (0.2) (0.06) (0.12) Output_10!CF7568 (13.0) (3.3) (9.7) (1,565.5) 92.7% 10 sorted by program 47 What’s Going On Here? CCCT1,2 costs • Levelized fixed cost3: $195/kWyr ($22.31/MWh ) • 7100 BTU/kWh heat rate; • energy cost at $5/MMBTU for gas, $37.32/MWh (= 35.5 ng + 1.82 VOM) • Levelized total: $59.63/MWh 1 Sixth Power Plan, L813 (source: C:\Backups\Plan 6\Studies\L814\L814d DUG 110125\Analysis\RL construction costs.xls) 2 2006 dollars 3 Ignores overnight construction cost uncertainty 48 What’s Going On Here? Fuel Fidelity1 Costs Segment Group 43 • Segment 713 (Replacement in Kind) – Gas FAF/Gas Tank – MMBTU/h = 32.50; RL fixed $/h = 224.76; kWh/h = 0 • Segment 714 – Electric FAF/Electric Resistance – MMBTU/h = 0; RL fixed $/h = 108.25; kWh/h = 8,032.25 (MMBTU/h = 27.41) – Levelized opportunity fixed cost3: $14.50/MWh ($127.07/kWyr) – Opportunity heat rate4: 4,046 MBTU/kWh – Levelized total ($5/MMBTU for gas): $34.73/MWh 1 2 3 4 Societal opportunity costs for refraining from switching to less costly electric appliances from gas appliances. 2006 dollars [FCM 05.xls]!’all segments’: $/MWh =[fixed $/h]/[kWh/h*1000] ($/kWyr =$/MWh*8760/1000) [FCM 05.xls]!’all segments’: BTU/kWh =[MMBTU/h]*[BTU/MMBTU]/[kWh/h] 49 A Brief Digression … • Want to compare two alternatives economically • We will take two perspectives, – a consumer or “conversion opportunity” perspective, and – a system’s or societal perspective 50 Conversion Opportunity Values • Situation one: electric appliance pair • Situation two: a gas appliance pair providing the same service If we want to compare these economically, we look at sum of the “fixed” (investment) cost and the operating cost of each … 51 Gas Appliances T hereal levelizedcost per year: $g $ f ,g $ MMBTU h yr yr MMBTU g h g yr Electric Appliances T hereal levelizedcost per year: $e $ f ,e $ MWh h yr yr MWh e h yr 52 Observation: Cost Savings or Opportunity Costs • If $g/yr > $e/yr, then we would choose the electric appliances, • The conversion savings would be $g/yr - $e/yr • If we chose not to convert, for some other reason, we would refer to $g/yr - $e/yr as our opportunity cost of conversion • To economists, opportunity cost are even more important than direct cost 53 Systems or Societal Perspective • If we chose the electric appliances, we would have to produce the electricity for them • Assume that generation is from a fraction of a CT, and match the kW of the appliances to the CT fraction 54 CT Cost T hereal levelizedcost per year $ t $ f ,t $ MMBTU h yr yr MMBTU g h t yr $ MWh h MWh e h yr We are assuming we are selling the power into the same market, and at the same price ($/MWh)e, as the electric customer is purchasing it 55 Electric Appliance from a System’s Perspective We have matched the kW from the CT with the appliances’ load, and we have assumed that the price of electricity is the same for both. Consequently, the operating cost term for the appliance equals the revenue term for the CT, and $ e $ f , e $ f ,t $ MMBTU h yr yr MMBTU g h t yr yr 56 A “Simplification” Suppose we wanted to eliminate the price of natural gas from our economic evaluation. We might be able to do this by separating the fixed costs from the operating costs. That is, $g/yr < ($e/yr)’ if both $f,g/yr - $f,e/yr < $f,t/yr and $ $ MMBTU h MMBTU h h h MMBTU g g yr MMBTU g t yr 57 System’s View… continued Or, MMBTU MMBTU kWh h g kWh t h e or MMBTUg kWhe MMBTU kWh t We could refer to the left-hand side of the last inequality as the “conversion heat rate” or “customer’s opportunity heat rate” of conversion, if we now elected to stay with gas instead of choose electric appliances and the CCCT. Similarly, $f,g/yr - $f,e/yr could be called the “conversion fixed cost” or “customer’s opportunity fixed cost” of conversion. 58