Evolution and Development of the Universe 8 - 9 October 2008, Paris, France ARE PARTICLES SELF-ORGANIZED SYSTEMS ? Vladimir A.

Download Report

Transcript Evolution and Development of the Universe 8 - 9 October 2008, Paris, France ARE PARTICLES SELF-ORGANIZED SYSTEMS ? Vladimir A.

Evolution and Development
of the Universe
8 - 9 October 2008, Paris, France
ARE PARTICLES
SELF-ORGANIZED SYSTEMS ?
Vladimir A. Manasson
Sierra Nevada Corporation
Irvine, California
[email protected]
ARE PARTICLES
SELF-ORGANIZED SYSTEMS ?
Self-organized systems are complex systems that
acquire stability of their dynamical variables
through dynamical feedback
http://astrocanada.ca/_photos/a4201_
univers1_g.jpg
http://farm2.static.flickr.com
/1287/588319871_a2304d8
7bf.jpg?v=0
http://www.astronomycast.c
om/wpcontent/uploads/2007/05/ab
ell2218.jpg
http://img.dailymail.co.uk/i/p
ix/2007/07_01/galaxy11_46
8x468.jpg
http://www.spacetoday.org/i
mages/DeepSpace/Stars/S
tarWR124Hubble.jpg
SELF-ORGANIZED SYSTEMS
http://www.wnps.org/ecosy
stems/images/middle_lake
s_wl.jpg
http://www.moneypit.com/me
mbers2/AardvarkPublisher/99
90261456922/image1.jpg
???
http://www.ices.dk/marinew
orld/photogallery/images/jel
lyfish.jpg
http://www.pasteur.fr/actu/press http://addiandcassi.com/wordp http://radio.weblogs.com/0105
ress/wp-content/uploads/dna- 910/images/hiphop_atom.jpg
e/images/plasmodium.jpg
image.jpg
V Manasson, EDU-2008
WHICH
THEORY?
Standard
Model
(QT)
?
Self-Organized
Systems
(SOS)
? ? ? ?
http://www-d0.fnal.gov/Run2Physics/WWW/results/final/NP/N04C/N04C_files/standardmodel.jpg
V Manasson, EDU-2008
STABILITY and DYNAMICAL PHASE PORTRAITS
Classical
Conservative
Dynamics
Idealistic
(Closed Systems)
CONDITIONAL
STABILITY
Realistic
(Open Systems)
SOS
ABSOLUTE
(ASYMPTOTIC)
STABILITY
j
Center
J
Limit cycle
Attractor
J+DJ
Quantum Systems
ABSOLUTE
STABILITY
Center
Center with
selected orbits
constrained by
fundamental
constants like ħ
ħ
Realistic
(Open Systems)
ħ +DJ
Jn=nħ Bohr-Sommerfeld
V Manasson, EDU-2008
Quantum systems resemble SOS
Heisenberg's
uncertainty
principle
Dt ~ ħ /DE
Dissipation time?
Permitted Orbit = Attractor?
QT
SOS
Y-function collapses
Non-reversibility
Perturbation technique
Renormalization
Nonlinearity
Non-Abelian Yang-Mills fields
V Manasson, EDU-2008
PHENOMENON of QUANTIZATION
in Nonlinear Dissipative Dynamics
V Manasson, EDU-2008
LOGISTIC MAP AS A SOS PARADIGM
yn+1
Jj
yn+1
8
y
J
A
Ji
yn
y
8
yn+1=FJ(yn)
yn
xn+1=Axn(1-xn)
A parameterizes limit points in the same
way generalized angular momentum J
parameterizes attractors
J i Jj
J
V Manasson, EDU-2008
BIFURCATIONS CHANGE
DIMENSIONALITY AND TOPOLOGY
OF THE PHASE SPACE
U(1)
Vector
y
2p
F(y)
SU(2)
Spinor
y1
y2
4p
F(F(y))
Feigenbaum point
http://www.lactamme.polytechnique.fr/
Mosaic/images/MOB2.11.D/image.jpg
V Manasson, EDU-2008
UNIVERSAL BEHAVIOR AND
FEIGENBAUM DELTA
0
F(y)
a)
xn1  Axn 1  xn )
2
y
b)
x
0 n 1
0.4
2
4
d=DJn/DJn+1=4.669..
 Asinpxn )
0.6
0.8
1
c)
xn1  A  xn2
0
y
yn+1=FJ(yn)
0
-2
DJ 1
DJ 2
8
1
3
1. UNIMODAL
2. QUADRATIC EXTREMUM
8
1
1
2
J
V Manasson, EDU-2008
J1
J2
J3
y
8
Superattractors
QUANTIZATION SPRINGS from
SUPERATTRACTORS
Lyapunov exponent
Dissipation Rate, D
F(y)
J
J1
J2
J3
http://web.mst.edu/~vojtat/class_355/ch
apter1/lyapunov_logistic.jpg
V Manasson, EDU-2008
Discrete spectrum
Coulomb-wave potential
Bifurcation diagram
J
J3
8
E
8
Continuous
spectrum
One More Similarity between SOS and QT
J2
E3
E2
E1
J1
Hydrogen atom
V Manasson, EDU-2008
QUANTIZATION OF GENERALIZED ANGULAR MOMENTUM
8
J
y
8
J
J 3  1 2pd 2  1 137
J3
J2
J 2  1 2pd  1 29
J1  1 2p  0.16
Sn   J n dj  2pJ n
J1
S1  1
V Manasson, EDU-2008
QUANTIZATION OF COUPLING CONSTANTS?
8
a
a  1 2pd  1 137
a3
2
aW  1 2pd  1/ 29
GUT
aS  1 2p  0.16
a2
a
y
8
J a
ELECTROMAGNETIC
WEAK
a1
STRONG
http://webplaza.pt.lu/public/fklaess/pix/merging_forces.gif
V Manasson, EDU-2008
MAJOR RESULT
Fine structure constant
a  1 2pd
2
a  e 4p0c
2
Accuracy ~ 0.04%

0
2
de )
0
2
Presence of d implies routes to chaos, which are
dynamics that cannot be properly described by QT
Presence of d underscores the relevance of perioddoubling bifurcation dynamics and SU(2) symmetry
Value d = 4.669.. suggests that we are dealing with
dissipative dynamics
Quantization of charge (e) and quantization of action (ħ)
have the same origin
V Manasson, EDU-2008
SU(2) SYMMETRY, SPINORS, and 4p ROTATION ANGLE
Family I
Leptons
p
Family I
n
Family I
Quarks
e
e
e 
e 
e
e 
e 
e
e 
 e 
e 
 e 
u
u 
u
d
u
d
d
 e 
 e 
u 
u 
u 
d 
d 
d 
d 
y1
y2
y3
y4
y1
y2
V Manasson, EDU-2008
e
Family I
Leptons
e
Family I
u
Family I
Quarks
e 
e 
e 
e 
u 
u 
d 
d

Family II
Leptons

Family II
c
Family II
Quarks
s

Family III
Leptons

Family III
t
Family III
Quarks
d 




 
 
c 
c 
s 
s 
 
 
 
 
t 
t 
b 
b
b 
e 
e 
e 
e 
 e 
 e 
 e 
 e 
u
u
u
u
d
d
d
d
















  
  
  
  
c 
c 
c
c
s
s




s 
s 




 
 
 
 
t
t
t
t
b
b
b
b
















BIFURCATION DIAGRAM and
PARTICLE "PHYLOGENETIC" TREE
EXCITATION DIAGRAM
EXCITATION
RELAXATION
(SPONTANEOUS
SYMMETRY
BREAK)
Electromagnetic
Excitation Level
Spin 2
Graviton?
Bosons (2 photons)
Spin 1
Spin 1/2
Dirac spinor
Electron
Branch
Fermions (4, including
charge and spin)
V Manasson, EDU-2008
EXCITATION DIAGRAM
Weak
Excitation
Level
Lepton
Branch
Bosons (4 electroweak)
Fermions (8)
Electron
Branch
Neutrino
Branch
V Manasson, EDU-2008
EXCITATION DIAGRAM
GUT
Strong
Excitation
Level
Lepton
Branch
Bosons (8 gluons)
Fermions (16)
Quark
Branch
Electron
Branch
Neutrino
Branch
V Manasson, EDU-2008
Is QT a quasi-linear surrogate of Nonlinear Dynamics?
Nonlinear Dynamics
Classical
Conservative
Dynamics
Statistical
Physics
Quantum
Theory
F(F(F(y)))
Duffing Oscillator
Numerical
Perturbation Theory
Renormalization
time
A. L. Fetter, J. D. Walecka, Nonlinear
Mechanics, Dover Publications, 2006
Nonlinear Dynamics
Quantum Theory
V Manasson, EDU-2008