15.082 & 6.855J & ESD.78J Algorithm Visualization The Ford-Fulkerson Augmenting Path Algorithm for the Maximum Flow Problem.
Download ReportTranscript 15.082 & 6.855J & ESD.78J Algorithm Visualization The Ford-Fulkerson Augmenting Path Algorithm for the Maximum Flow Problem.
15.082 & 6.855J & ESD.78J Algorithm Visualization The Ford-Fulkerson Augmenting Path Algorithm for the Maximum Flow Problem Ford-Fulkerson Max Flow 4 2 3 5 1 1 1 2 2 s 4 3 1 t 2 3 4 2 3 5 1 1 2 2 s 3 4 1 3 2 1 t This is the original network, and the original residual network. 3 Ford-Fulkerson Max Flow 4 2 3 5 1 1 1 2 2 s 4 3 1 t 2 3 4 2 3 1 1 2 2 s 3 Find any s-t path in G(x) 5 4 1 3 2 1 t 4 Ford-Fulkerson Max Flow 4 2 3 5 1 1 2 1 2 s 4 2 3 1 1 2 1 t 1 3 Determine the capacity Δ of the path. 4 2 3 5 1 1 2 2 s 3 4 1 3 2 1 t Send Δ units of flow in the path. Update residual capacities. 5 Ford-Fulkerson Max Flow 4 2 3 5 1 1 2 1 1 2 s 4 2 3 1 2 1 t 1 3 4 2 3 5 1 1 2 2 s 3 4 1 3 2 Find any s-t path 1 t 6 Ford-Fulkerson Max Flow 4 2 5 3 1 1 2 1 s 2 3 11 4 1 1 1 3 3 5 1 1 2 2 s 3 4 1 3 2 2 1 1 t 1 Determine the capacity Δ of the path. 4 2 1 1 t Send Δ units of flow in the path. Update residual capacities. 7 Ford-Fulkerson Max Flow 4 2 5 3 1 1 2 1 1 11 s 2 3 4 1 1 1 3 2 1 1 t 1 4 2 3 5 1 1 2 2 s 3 4 1 3 2 Find any s-t path 1 t 8 Ford-Fulkerson Max Flow 4 2 5 3 1 1 1 s 2 3 11 4 1 2 1 1 3 3 5 1 1 2 2 s 3 4 1 3 2 1 1 2 t 1 Determine the capacity Δ of the path. 4 2 1 1 t Send Δ units of flow in the path. Update residual capacities. 9 Ford-Fulkerson Max Flow 4 2 5 3 1 1 1 2 1 11 s 2 3 4 1 2 1 1 3 1 1 2 t 1 4 2 3 5 1 1 2 2 s 3 4 1 3 2 Find any s-t path 1 t 10 Ford-Fulkerson Max Flow 4 2 5 3 1 1 1 1 2 s 1 2 11 4 1 2 1 2 1 3 3 5 1 1 2 2 s 3 4 1 3 2 1 2 2 1 Determine the capacity Δ of the path. 4 2 1 t 1 t Send Δ units of flow in the path. Update residual capacities. 11 Ford-Fulkerson Max Flow 4 2 5 3 1 1 1 2 1 11 s 1 2 4 1 2 1 2 t 1 2 1 3 2 1 4 2 3 5 1 1 2 2 s 3 4 1 3 2 Find any s-t path 1 t 12 Ford-Fulkerson Max Flow 4 3 2 1 3 2 1 5 1 1 1 s 1 2 1 4 1 2 1 2 1 3 3 5 1 1 2 2 s 3 4 1 3 2 2 1 Determine the capacity Δ of the path. 4 2 1 2 t 1 t Send Δ units of flow in the path. Update residual capacities. 13 Ford-Fulkerson Max Flow 4 3 2 1 3 2 1 5 1 1 1 s 1 2 1 4 1 2 1 2 1 3 4 2 3 5 1 1 2 2 s 3 4 1 3 2 1 t 1 2 t 2 1 There is no s-t path in the residual network. This flow is optimal 14 Ford-Fulkerson Max Flow 4 3 2 1 3 2 1 5 1 1 1 s 1 2 1 4 1 2 1 2 1 3 4 2 3 2 2 s 3 4 1 3 2 2 1 These are the nodes that are reachable from node s. 5 1 1 1 2 t 1 t 15 Ford-Fulkerson Max Flow 1 2 5 1 1 2 2 s 4 2 t 2 3 4 2 3 1 1 2 2 s 3 Here is the optimal flow 5 4 1 3 2 1 t 16 MITOpenCourseWare http://ocw.mit.edu 15.082J / 6.855J / ESD.78J Network Optimization Fall 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.