Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April 20, 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected].

Download Report

Transcript Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April 20, 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected].

Linac Coherent Light Source (LCLS)
Low Level RF System
Injector Turn-on December 2006
April 20, 2006
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Safety First and Second and Third…..to Infinity
Hazards in the LLRF system
RF 1kW at 120Hz at 5uS = 0.6 Watts average,
2 Watt average amps at 2856MHz,
60W average amps at 476MHz
Hazards – RF Burns
Mitigation – Avoid contact with center conductor of energized
connectors. All employees working with LLRF systems are
required to have the proper training.
110VAC Connector
Hazards - Shock
Mitigation - Don’t touch conductors when plugging into outlet.
All chassis are inspected by UL trained inspector.
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Scope of Work – Injector Turn-on
Linac Sector 0 RF Upgrade WBS 1.02.04.03.01
All 3 RF Chassis completed and Installed
Control Module ready for test – John Dusatko
Sector 20 RF distribution system WBS 1.02.04.03.02
Phase and Amplitude Controllers (PAC) – 6 units in Design
Phase and Amplitude Detectors (PAD) – 1 unit in Design
Phased Locked Oscillator – Use SPPS unit for Turn On
LO Generator – Design 90% Complete and tested
Multiplier – 476MHz to 2856MHz – Complete
4 distribution chassis - Complete
Laser Phase Measurement – in Design – not required for turn on
LLRF Control and Monitor System WBS 1.02.04.03.03
1 kW Solid State S-Band Amplifiers – 5 units – in Fab, 2 done
PAD – 12 units as above in design
PAC – 6 units as above in design
Bunch Length Monitor Interface – awaiting Specs
Beam Phase Cavity WBS 1.02.04.03.04
Will use single channel of PAD Chassis
Pill box cavity with 2 probes and 4 tuners - Complete next month
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LCLS Layout
P. Emma
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LLRF Control system spans Sector 20 off axis injector to beyond Sector 30
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LCLS RF Jitter Tolerance Budget
Lowest Noise Floor
Requirement
0.5deg X-Band = 125fS
Structure Fill time = 100nS
Noise floor = -111dBc/Hz
@ 11GHz 10MHz BW
-134dBc/Hz @ 476MHz
0.50
X-band
XRMS tolerance budget for
<12% rms peak-current jitter or
<0.1% rms final e− energy
jitter. All tolerances are rms
levels and the voltage and
phase tolerances per klystron
for L2 and L3 are Nk larger,
assuming uncorrelated errors,
where Nk is the number of
klystrons per linac.
P. Emma
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Slow Drift Tolerance Limits
(Top 4 rows for De/e < 5%, bottom 4 limited by feedback dynamic range)
Gun-Laser Timing
Bunch Charge
Gun RF Phase
Gun Relative Voltage
L0,1,X,2,3 RF Phase (approx.)
L0,1,X,2,3 RF Voltage (approx.)
(Tolerances are peak values, not rms)
2.4* deg-S
3.2
%
2.3 deg-S
0.6
%
5
deg-S
5
%
P. Emma, J, Wu
* for synchronization, this tolerance might be set to 1 ps (without arrival-time measurement)
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Linac Sector 0 RF Upgrade
LCLS must be compatible with the existing linac operation including PEP timing shifts
MAIN LINAC (SECTOR 0) RF/TIMING SYSTEM
Master Oscillator is
located 1.3 miles
from LCLS Injector
Measurements on
January 20, 2006
at Sector 21
show 30fS rms jitter
in a bandwidth from
10Hz to 10MHz
1
476MHz
MASTER
OSCILLATOR
PEP PHASE
SHIFTER
+-720 Degrees
in 0.5mS
LCLS LLRF
MASTER
AMPLIFIERS
476MHz
SLC COUNTDOWN
CHASSIS 476MHz
Divide to 8.5MHz
8.5MHz
360Hz Line
Sync.
360Hz
PEP PHASE SHIFT ON MAIN DRIVE LINE
April 20, 2006
Sum
Fiducial
to RF
Master Trigger
Generator MTG
Syncs Fiducial to
8.5MHz Damping Ring
and 360Hz Power Line
Main Drive Line (MDL)
476MHz RF plus
360Hz Fiducial
To:
Main Linac - 2 miles
Damping Rings
PEP
NLCTA
End Station A
FFTB
ORION
1.3 Miles to
LCLS Injector
Fiducial Generator
Syncronized to:
360Hz Power Line
8.5MHz Damping Ring
476MHz RF Distribution
MDL RF with TIMING Pulse – Sync to DR
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Linac Sector 0 RF Upgrade Status
New Low Noise Master Oscillator – Done
New Low Noise PEP Phase Shifter
RF Chassis – Done
Control Chassis – In Test
New Low Noise Master Amplifier – Done
Main Drive Line Coupler in Sector 21 – Done
Measurements
Noise floor on 476MHz of -156dBc/Hz
Integrated jitter from 10Hz to 10MHz of 30fS
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Sector 20 RF Distribution
M a in Dr ive Line ( M DL )
476 M Hz R F
360 Hz Fiducial
From Secto r 0 ( 2km )
LCLS Sector 20 RF Reference System
M D L to Linac Secto rs 21 to 30
PEP and R esear ch Yar d
RF HUT Coupler
476MHz Ref. 100uW
FSJ4-50 0.8dB/30ft
476 M Hz
LASE R LO C K
Re fere nce
LCLS 476MHz PLL
R F C O NTR O L
IQ M odulator
T IM ING SY ST EM
F IDO
120 Hz
TRBR
Track/H old
TRBR
119 M Hz
R F C O NTR O L
O ffset adjust
LA S E R
Sample and Hold PLL
with DAC offset adjust
and Error Monitor
LASER Diode
Output
2830.5MHz LO Gen
119 M Hz P hase
RF MONITOR
119 M Hz
0dB m O UT
4x 47 6M H z
13d Bm O U T
IQ M odulato r to adjust
283 0.5M Hz to 2 856M Hz Pha se
+13dBm in
+13dBm in
Divide 112 to 25.5 M Hz
SSB M ix to 28 30.5M Hz
4X to 102 M Hz
476MHz to 2856MHz
MULTIPLIER
476MHz to 2856MHz
MULTIPLIER
25.5M H z out
+7dBm
RF MONITOR
R F C O NTR O L
IQ M odulator
102 M Hz o ut
2 830.5 M Hz o ut
+17dBm
RF CONTROL
IQ Modulator
RF CONTROL
IQ Modulator
RF CONTROL
IQ Modulator
2856MHz
2W att Amplifier
102MHz
2W att Amplifier
2830.5MHz
2W att Amplifier
Diode Detector
Diode Detector
Diode Detector
2856MHz
16 W ay Distribution
20dBm each
G un
L0A
L0B
L0TC AV
L1S
L1X
LIN AC
EXPE RIM E NTS
102 M Hz
Digitizer Clocks
16 W ay Distr ibution
20d Bm ea ch
G un
L0A
L0B
L0TC AV
L1S
L1X
LO P hase M onitor
RF MONITOR
2856MHz from Sector 21
IQ Modulator Control
Mixer Monitor
2856MHz
+7dBm
+17dBm
285 6M H z
LASE R D io de
Pha se Noise
M e asure m ent
285 6M H z in
LO P hase M onitor
RF MONITOR
283 0.5M Hz LO
16 W ay Distr ibution
20d Bm ea ch
G un
L0A
L0B
L0TC AV
L1S
L1X
Phase Critical Cables
Laser <140ft < 700fSpp
Gun < 100ft < 400fSpp
LO P hase M onitor
RF MONITOR
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Sector 20 RF Distribution System Status
Phase Locked Oscillator – 476MHz
Initial Turn On use SPPS Oscillator
May modify control to achieve better stability during 2007
LO Generator – 2830.5MHz
Design complete – Prototype tested – 25MHz SSB modulator board done
2856MHz IQ Modulator prototype near completion
Multipliers - 476MHz to 2856MHz – Done
Phase and Amplitude Control (PAC) Unit
In Design – IQ Modulators and Amplifiers selected – See Next Section
Phase and Amplitude Detector (PAD) Unit
In Design – Testing Mixers, Amplifiers, Filters – See Next Section
Amplifiers – not ordered yet
Laser Phase Measurement System – Design Started
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LLRF Control System
Distributed Control System
Microcontroller based IOC Control and
Detector Modules
Ethernet Switch
Central Feedback Computer
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LLRF Control and Monitor System Klystron Station
TRIG
LCLS RF HUT
2830.5MHz LO
Amp / Splitter
ENET
Trig & Ethernet
From Klystron Drive Coupler
TCAV
20-5
RF Gun
20-6
L0A
20-7
L0B
20-8
L1S
21-1
L1X
21-2
3dBm
LO
PAC OUT
PAD
KLY BEAM Voltage
SPARE
102MHz
Clock In
Out
LCLS RF HUT
102MHz Clock
Amp / Splitter
TCAV
20-5
RF Gun
20-6
L0A
20-7
L0B
20-8
L1S
21-1
L1X
21-2
240ft = 2.5dB 1/2 Superflex
= 1.6dB LDF4
= 3dB LDF1
23dBm
13dBm
102MHz Clock In
LCLS RF HUT
2856MHz RF
Amp / Splitter
TCAV
20-5
RF Gun
20-6
L0A
20-7
L0B
20-8
L1S
21-1
L1X
21-2
240ft = 17dB 1/2 Superflex
= 10dB LDF4
SSSB
PAC
3dBm
Coupled Out
In 2856MHz Out
SSSB Control
17dBm
Coupled Out
In 2856MHz Out
To IPA
Klystron Drive
Control & TRIG
Trig & Ethernet
ENET
TRIG
140ft = 25dB 3/8 Superflex
RF HUT
April 20, 2006
LCLS LLRF
KLYSTRON STATION
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LLRF Control and Monitor System Status
1 kW Solid State S-Band Amplifiers – 5 units
1kW amplifier modules currently in test
Existing amplifier support design under review
Phase and Amplitude Detectors – 11 dual chan units
Preliminary Design Complete
Evaluating amplifiers, mixers, and filters
Phase and Amplitude Controllers – 6 single chan units
Preliminary design complete
Evaluating mixers and amplifiers
Bunch Length Monitor Interface
Need Specifications
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Beam Phase Cavity Status
Measurement of beam phase to RF reference phase. The result will be
used to correct timing of laser to RF reference. Cavity is located
between L0A and L0B.
Electronics will use single
channel of PAD Chassis
Pill box cavity with 2 probes
and 4 tuners
Cavity Electronics will use
single channel of RF Monitor
Cavity in fabrication
Complete – May 2006
Bake – June 2006
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Controls Engineering Requirements
When beam is present, control will be done by
beam-based longitudinal feedback (except for Tcavs); when beam is absent, control will be done
by local phase and amplitude controller (PAC)
Adhere to LCLS Controls Group standards:
RTEMS, EPICS, Channel Access protocol
Ref: Why RTEMS? Study of open source real-time OS
Begin RF processing of high-powered structures
June 2006
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
External Interfaces
LLRF to LCLS global control system
PVs available for edm screens, archiving, etc over
controls network
LLRF VME to beam-based longitudinal feedback
from feedback: phase and amplitude corrections at 120
Hz over private ethernet
from LLRF: phase and amplitude values
(internal) LLRF VME to LLRF microcontrollers
from VME: triggers, corrected phase and amplitude
from microcontrollers: phase and amplitude averaged
values at 120 Hz, raw phase and amplitude values for
diagnostics
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Sector 20 PAC and PAD Control
VME IOC
Ethernet Switch
Arcturus Coldfire
13 PADs
FIFO
ADC
13 PACs
FPGA
DAC
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
EPICS PANELS
Single Pulse
Diagnostic Panels for
PADs are Running
Remaining Software
History Buffer Select
PVs
Multi pulse data
analysis, correlation
plots
Local RF Feedback
loops
Links to global
Feedback loops
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
RF Status Summary
Linac New Low Noise Source – RF components installed, Controls Feb06
RF Distribution – Prototyping underway (R. Akre, B.Hong, H. Schwarz)
Monitor Controller Board (J. Gold, R. Akre, Till Straumann)
Single channel prototype for ADS5500 tested to specifications
Four channel ADS5500 board – layout complete (SNR 70dBFS)
Switched to LTC2208 16bit 130MSPS ADC (Prototype in test) (SNR 77dBFS)
RF Monitor Board in preliminary design (H. Schwarz, B.Hong)
Testing mixers
Control Boards (J. Olsen)
Fast Control Board – All but slow ADCs for temp and voltages tested and low level drivers
written
Slow control board – use fast board
RF Control Board in preliminary design (H. Schwarz, B. Hong)
Software (D. Kotturi, Till Straumann)
EPICS on RTEMS on Microcontroller done
Drivers – data collection interrupt routine done
Algorithms – PAD 90% complete PAC in progress
Calibration routines – Need specifications
Collision free Ethernet
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LLRF Schedule
RF Distribution Design Complete May 2006
RF Hut Distribution System installed August 2006
PAC design Complete June 2006
PAD design Complete July 2006
PAC and PAD minimal operational software complete
Ethernet testing with multiple PACs and PADs???
Single S-Band station – hardware installed Sept 2006
4 other S-Band Stations – November 2006
Feedback software interfacing???
Test and debug with Klystrons On – December 2006
X-Band Station January 2007
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
End of LLRF RF Talk
Backup for RF Talk
Mostly Correct
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
DESIGN PHILOSOPHY
Reliability is inversely proportional to the number of
connectors.
Stability is inversely proportional to the number of
connectors.
Measurement accuracy is inversely proportional to
the number of connectors and the amount of
Teflon,which is typically found in connectors.
Cost of maintenance is proportional to the number
of connectors.
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Electro-Optical Sampling
200 mm thick ZnTe crystal
Single-Shot
e-
Timing Jitter
(20 Shots)
<300 fs
Ti:Sapphire
laser
e- temporal information is encoded
on transverse profile of laser beam
170 fs rms
Adrian Cavalieri et al., U. Mich.
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
MPS – PPS Issues
Addressed by Controls Group
Not Reviewed Here
Vacuum
New vacuum system summary to be fed to each
klystron existing MKSU.
PPS System
Injector modulators will be interlocked by Injector
PPS system.
PPS requirements for radiation from the injector
transverse accelerator needs to be determined.
Radiation levels will be measured during testing
in the Klystron Test Lab – Feb 06.
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Bandwidth of S-Band System
Upper Frequency Limit – 10MHz
Beam-RF interaction BW due to structure fill time
< 1.5MHz S-Band Accelerators and Gun
~10MHz X-Band and S-Band T Cav
Structure RF Bandwidth ~ 16MHz
5045 Klystron ~ 10MHz
Lower Frequency Limit – 10kHz
Fill time of SLED Cavity = 3.5uS about 100kHz
Laser – Needs to be measured ~ 10kHz
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Noise Levels
RF Reference Single Side Band (SSB) Noise Floor
2856MHz RF Distribution -144dBc/Hz
-174dBc/Hz @ 119MHz (24x = +28dB +2 for multiplier)
2830.5MHz Local Oscillator -138dBc/Hz
Integrated Noise
-138dBc/Hz at 10MHz = -65dBc = 32fS rms
SNR = 65dB for phase noise
Added noise from MIXER (LO noise same as RF)
SNR of 62dB
ADC noise levels
SNR of 70dB – 14bit ADS5500 at 102MSPS
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Phase Noise – Linac Sector 0
OLD MASTER OSCILLATOR
-133dBc/Hz at 476MHz
340fSrms jitter in 10MHz BW
NEW MASTER OSCILLATOR
-153dBc/Hz at 476 MHz
34fSrms jitter in 10MHz BW
Integrated Noise - Timing Jitter fs rms
Integral end
Integral start
Aug 17, 2004
Sector 30
Jan 20, 2006
Sector 21
April 20, 2006
LCLS LLRF
5MHz
1M
1k
10kHz
100
100k
10k
10
27
30
33
38
75
82
15
19
20
20
8
17
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Sector 20 RF Distribution Cable Errors
Temperature Coefficient of 2.8ppm/ºF and
Cable length is 1200ºS/ft
All Cables except LASER are less than 100ft
Distances feet and errors in degrees S total range
RF Hut
Down
Linac
Wall
Injector Total
Unit
Ft degS ft degS
ft degS
ft degS ft degS DegS
Laser 8 0.054 25 0.017 10 0.014 10 0.007 85 0.58
0.68
Gun
8 0.054 25 0.017 10 0.014 10 0.007 40 0.27
0.37
L0-A
8 0.054 25 0.017 10 0.014 10 0.007 30 0.21
0.31
B Phas 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14
0.24
L0-B
8 0.054 25 0.017 10 0.014 10 0.007 20 0.14
0.24
L0-T
8 0.054 25 0.017 10 0.014 10 0.007 10 0.07
0.17
L1-S
8 0.054 25 0.017 50 0.068
0.14
L1-X
8 0.054 25 0.017 60 0.081
0.16
Temperature Variations: RF Hut ±1ºF : Penetration ±0.1ºF : Linac : ±0.2ºF
Shield Wall ±0.1ºF : Injector ±1ºF
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
RF System Topology / Specifications
Linac
Sector 0 RF
Number of cables per device
Reference cables are
MDL
8ft and can drift +-50fS
L0, L1 - 5 Klystrons
Specifications
100fS rms jitter
+-2.3pS drift
476MHz PLL
2830.5MHz LO
Amp / Splitter
+-5pS drift
1
RF Gun
5
L0A
Phase Cavity
L0B
L3 - 6 Sectors
Specifications
150fS rms jitter
PAD
Laser
L2 - 4 Sectors
Specifications
70fS rms jitter
Cable Drift Based on
L1S
L1X
+-5pS drift
L2 Ref
2
2
2
4
2
1
Laser
RF Gun
L0A
Phase Cavity
L0B
L1S
L1X
L2 Ref
Temperature variations
and temp co of 5ppm/degC
+-680fS
Laser
+-370fS
RF Gun
+-310fS
+-240fS
+-240fS
+-140fS
+-160fS
+-500fS
RF HUT
April 20, 2006
LCLS LLRF
Most Devices
are in tunnel
Ron Akre, Dayle Kotturi
[email protected], [email protected]
L0A
Phase Cavity
L0B
L1S
L1X
L2 Ref
RF Monitor Signal Counts
ADC Chan Cnt
Distribution (5~2850MHz, 4<500MHz)
RF Gun
Beam Phase Cavity
L0-A Accelerator
L0-B Accelerator
L0-T Transverse Accelerator
L1-S Station 21-1 B, C, and D Acc
L1-X X-Band accelerator X-Band
S25-Tcav
S24-1, 2, & 3 Feedback
S29 and S30 Feedback
Total Chassis
Total into Hut IOC
April 20, 2006
LCLS LLRF
4
9
2
4
4
4
6
5
4
0
0
Chassis Count/Location
1Kly
1Kly
1Kly
1Kly
1Kly
1Kly
1Kly
7Kly
12
Ron Akre, Dayle Kotturi
[email protected], [email protected]
1Hut
1.5Hut
0.5Hut
0.5Hut
0.5Hut
0.5Hut
1.0Hut
0.5Hut
6Hut
RF Control Signal Counts
Distribution (3~2850MHz, 3<500MHz)
RF Gun
Beam Phase Cavity
L0-A Accelerator
L0-B Accelerator
L0-T Transverse Accelerator
L1-S Station 21-1 B, C, and D accelerators
L1-X X-Band accelerator X-Band
S25-Tcav
S24-1, 2, & 3 Feedback
S29 and S30 Feedback
Total modulators
Totals at ~2856MHz
Total into Hut IOC
April 20, 2006
LCLS LLRF
11 Fast
6 IQ Mod
1 Klystron
1 IQ mod
1 Klystron
1 Klystron
1 Klystron
1 Klystron
1 IQ Mod
1 Klystron
3 Klystrons
2 IQ modulators 476MHz
8 Slow
19 modulators
14 modulators
14 modulators
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LLRF Control and Monitor System
LLRF Control and Monitor System
1 kW Solid State S-Band Amplifiers – 5 units
Phase and Amplitude Monitors – 12 units
Phase and Amplitude Controllers – 6 units
Bunch Length Monitor Interface – Need Specifications
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
RF Control
Required 13 Units
3
I C o ntrol
Includes Distribution
BX M P1 007
I
R F In
1
LO
RF 2
17 dBm
R F O ut
0d Bm
17 dBm
4
Q
28 56M H z In put M onito r
Q C on tro l
28 56M H z O utpu t M on itor
2850M H z IQ M odulator
RF Control Module consist of the following:
Input Coupler, IQ Modulator, Amplifier, Output Coupler
Filters for I and Q inputs
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
RF Monitor
Required 13 Chassis for Injector – Includes Distribution
LO 2830.5MHz : RF 2856MHz
IF 25.5MHz (8.5MHz x 3 in sync with timing fiducial)
Double-Balanced Mixer
Mixer IF to Amp and then Low Pass Filter
Filter output to ADC sampling at 102MSPS
RF LO
2830.5MHz Local Osc.
A m p lifie r
IF
M IX E R
2856MHz RF Signal
April 20, 2006
LCLS LLRF
To ADC
LTC2208 SNR = 77dBFS
2 5 .5 M Hz B P FIL TE R
102MSPS
Ron Akre, Dayle Kotturi
[email protected], [email protected]
1 kW Solid State S-Band Amplifiers
Design Complete
Two Units on the Shelf
Modules in house – and
tested
Support parts – Some
parts in house
Power Supplies, relays,
chassis on order
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
SLAC Linac RF – New Control
MDL 476MHz
Next Sector
1mW
1W
6X
2856MHz
Existing
Phase
Reference
Line
SubBooster
3
Sub Drive Line
The new control system will tie in
to the IPA Chassis with 1kW of
drive power available. Reference
will be from the existing phase
reference line or the injector new
RF reference
To Next
Klystron
I
3kW
1
High Power
Phase Shifter
Attenuator
20mW
Phase &
Amplitude
Detector
Klystron
SLED
200MW
April 20, 2006
LCLS LLRF
-45dB
Accelerator
1kW Amp
2856MHz
Q
4
IPA
Existing
System
LO
2 RF
IQ Modulator
I and Q will be controlled with a
16bit DAC running at 119MHz.
Waveforms to the DAC will be set
in an FPGA through a
microcontroller running EPICS on
RTEMS.
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Controls Talk
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
LLRF Controls
Outline
Requirements
External Interfaces
Schedule
Date Needed
Prototype Completion Date
Hardware Order Date
Installation
Test Period
Design
Design Maturity (what reviews have been had)
State of Wiring Information
State of Prototype
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Requirements
At 120 Hz, meet phase/amp noise levels
defined as:
0.1% rms amplitude
100 fs rms in S-band (fill time = 850 ns)
125 fs rms in X-band (fill time = 100 ns)
All tolerances are rms levels and the voltage and
phase tolerances per klystron for L2 and L3 are
Nk larger, assuming uncorrelated errors, where
Nk is the number of klystrons per linac (L2 has
28; L3 has 48)
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Engineering Requirements
When beam is present, control will be done by
beam-based longitudinal feedback (except for Tcavs); when beam is absent, control will be done
by local phase and amplitude controller (PAC)
Adhere to LCLS Controls Group standards:
RTEMS, EPICS, Channel Access protocol
Ref: Why RTEMS? Study of open source real-time OS
Begin RF processing of high-powered structures
May 20, 2006
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
External Interfaces
LLRF to LCLS global control system
PVs available for edm screens, archiving, etc over
controls network
LLRF VME to beam-based longitudinal feedback
from feedback: phase and amplitude corrections at 120
Hz over private ethernet
from LLRF: phase and amplitude values
(internal) LLRF VME to LLRF microcontrollers
from VME: triggers, corrected phase and amplitude
from microcontrollers: phase and amplitude averaged
values at 120 Hz, raw phase and amplitude values for
debug
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
External Interfaces: Laser - Tcav
RF Phase and Amplitude correction at 120 Hz for:
laser, gun, L0-A, L0-B, L1-S, L1-X, T cav
In-house modules sharing VME crate for timing triggers
476 MHz RF Reference clock distributed to all 30 sectors in the Linac and beyond
Temperature monitors
RF Reference/4 = 119 MHz
stabilized to 50 fs jitter
T Cav
L1-X
L1-S
L0-B
L0-A
gun
Laser and RF ref
PAD
I and Q
Demodulator
F
I
F
O
s
A
D
C
Coldfire
CPU
running
RTEMS
and
EPICS
D
A
C
s
l
o
w
C
P
U
RF Reference*6 = 2856 MHz
stabilized to 50 fs jitter
VME Crate at S20
running
longitudinal,
beam-based
feedback
E
V
R
PAC
Coldfire
CPU
running
RTEMS
and
EPICS
FPGA
Private ethernet
4 kBytes at 120 Hz
D
A
C
D
A
C
1 trigger
for 4
channels
of 1k
samples
s
l
o
w
Private ethernet
8 kBytes at 120 Hz
Private ethernet
Controls gigabit ethernet (interface to MCC)
IQ Modulator
gives phase
and amplitude
control
1 trigger to travel
up to ½ sector
away
All except laser RF
La
) I
&Q F
t (I r R
Ou ato
RF ler
or
e
rat
cc
ele
A
cc
c/
/A
Q)
na
ac
Li z (I& Q)
Lin
H (I&
20 z
F 1 MH
r R 19
se 1
La r RF
se
100 mW
119 MHz
Laser
Oscillator
Solid State Sub Booster
1 kW
photodiode
Amps
Klystron
119 MHz
120 Hz
60 MW
photodiode
UV
n
SLED
cavity
Gun
&
(I
NB: For the gun, SLED
cavity is shorted out
Q
)
HPRF
240 MW
1 kW
1 kW
60 MW
10' accelerator
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
External Interfaces: L2-L3
RF Phase and Amplitude correction at 120 Hz for:
laser, gun, L0-A, L0-B, L1-S, L1-X, T cav
In-house modules sharing VME crate for timing triggers
476 MHz RF Reference clock distributed to all 30 sectors in the Linac and beyond
Temperature monitors
RF Reference/4 = 119 MHz
stabilized to 50 fs jitter
T Cav
L1-X
L1-S
L0-B
L0-A
gun
Laser and RF ref
PAD
I and Q
Demodulator
F
I
F
O
s
A
D
C
Coldfire
CPU
running
RTEMS
and
EPICS
D
A
C
s
l
o
w
C
P
U
RF Reference*6 = 2856 MHz
stabilized to 50 fs jitter
VME Crate at S20
running
longitudinal,
beam-based
feedback
E
V
R
PAC
Coldfire
CPU
running
RTEMS
and
EPICS
FPGA
Private ethernet
4 kBytes at 120 Hz
D
A
C
D
A
C
1 trigger
for 4
channels
of 1k
samples
s
l
o
w
Private ethernet
8 kBytes at 120 Hz
Private ethernet
Controls gigabit ethernet (interface to MCC)
IQ Modulator
gives phase
and amplitude
control
1 trigger to travel
up to ½ sector
away
All except laser RF
La
) I
&Q F
t (I r R
Ou ato
RF ler
or
e
rat
cc
ele
A
cc
c/
/A
Q)
na
ac
Li z (I& Q)
Lin
H (I&
20 z
F 1 MH
r R 19
se 1
La r RF
se
100 mW
119 MHz
Laser
Oscillator
Solid State Sub Booster
1 kW
photodiode
Amps
Klystron
119 MHz
120 Hz
60 MW
photodiode
UV
n
SLED
cavity
Gun
&
(I
NB: For the gun, SLED
cavity is shorted out
Q
)
HPRF
240 MW
1 kW
1 kW
60 MW
10' accelerator
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Design
Design maturity (what reviews have been had):
RF/Timing Design, DOE Review, August 11, 2004
Akre_FAC_Oct04_RF_Timing, FAC Review, October, 2004
Low Level RF Controls Design, LCLS Week, January 25-27, 2005
Low Level RF, Lehman Review, May 10-12, 2005
LLRF Plans for Development and Testing of Controls, LCLS Week, July 21, 2005
Low Level RF Design, Presentation for Controls Group, Sept. 13, 2005
LLRF Preliminary Design review, SLAC, September 26, 2005
LCLS LLRF Control System - Kotturi, LLRF Workshop, CERN, October 10-13, 2005
LCLS LLRF System - Hong, LLRF Workshop, CERN, October 10-13, 2005
LLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/Akre, LCLS Week, SLAC, October 24-26,
2005
LCLS Week LLRF and feedback - Kotturi/Allison, LCLS Week, SLAC, October 24-26, 2005
LLRF, LCLS System Concept Review/Preliminary Design Review, SLAC, November 16-17, 2005 Comments
LLRF Beam Phase Cavity Preliminary Design review, SLAC, November 30, 2005
Docs at: http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/llrf
State of wiring: percent complete Captar input will be given at time of presentation
State of prototype: PAD (1 chan ADC) and PAC boards built (shown on next pages).Testing.
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
PAD – the monitor board
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
PAD – the monitor board
RF Board
Line Drivers
Filters
2 X 16 bit ADC
119 or 102MHz Clock
LTC2208
Transformer Coupled Inputs
Control Board
FIFO 2 X 1k words
16bit DATA
25.5MHz IF
16 bit
DATA
Chan. 1
IF
WCLK
RF LO
16bit DATA
CS/
CLK
MIXER
Chan. 2
IF
WCLK
RF CHAN 2
INPUT
CONTROL /
Arcturus uC5282
Microcontroller Module
with 10/100 Ethernet
RF LO
MIXER
Control
LO INPUT
RF - 25.5MHz
April 20, 2006
LCLS LLRF
EXTERNAL
CLOCK
102MHz
CPLD
EXTERNAL
TRIGGER
120Hz
Ron Akre, Dayle Kotturi
[email protected], [email protected]
ETHERNET
RF CHAN 1
INPUT
PAC – the control board
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
PAC – the control board
EXTERNAL
TRIGGER
TRIGGER
Monitor TTL 120Hz
60nS NIM
CLOCK
119MHz
SSSB
Chassis
MONITOR
PORTS
RF BOARD
MATCHING
FILTER
NETWORK
I&Q MODULATOR
3
16bit DATA
1
LO
2 RF
4
Q
XILINX
SPARTAN 3
FPGA
16 bit
DATA
CS/
CLK
CONTROL /
Arcturus uC5282
Microcontroller Module
with 10/100 Ethernet
AD8099 Diff Amp
2856MHz Ref
Control
Temperature
Monitor
DC Power
Supply
Monitors
t
Control
Temperature
Monitor
t
Thermocouples
DC Power
Supplies
April 20, 2006
LCLS LLRF
ADCs
Control Board
Ron Akre, Dayle Kotturi
[email protected], [email protected]
ETHERNET
I
CLK
MAX5875
2 X 16 bit DAC
119MHz Clock
16bit DATA
(1MHz to 200MHz)
Q
CLK
I
RF OUTPUT
To SSSB
Temperature Monitor
Forward Power 0-?V
Reflected Power 0-?V
Over Temp 0 or 12V
Power Supplie +12V
Power Supply -12V
SSSB
Trig
TTL
17 to 30uS
Additional Slides
The following two pages show an overview
of the LLRF control modules. From these
diagrams, counts of module types, as well as
function and location are seen.
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Overview of LLRF at Sector 20
RF phase and amplitude correction and global feedback at 120 Hz for LCLS LINAC S20
RF Dist’n
SPAC
SPAC
SPAC
SPAC
SPAC
PAD
PAC
Laser
Gun
L0-A
L0-B
PAC
PAD
PAD
Key:
Indicates located in RF Hut
Otherwise at Klystron
SPAC
PAD
PAC
PAD
PAD
PAD
PAD
Indicates may be needed
The maybe is included in
counts below
PAC
PAD
PAD
L0-Tcav
Eth
recvr
PAC
PAD
PAD
PAC
PAD
PAD
PAD
L1-S
C
P
U
VME Crate at S20
running
longitudinal,
beam-based
feedback.
E
V
R
L1-X
PAC
PAD
Beam Phase
Monitor
PAC
PAD
PAD
PAD
S20
Fast PACs:
Slow PACs (SPACs):
PADs:
VME crates:
April 20, 2006
LCLS LLRF
8
6
19
1
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Overview of LLRF at Sector 24
RF phase and amplitude correction and global feedback at 120 Hz for LCLS LINAC S20
S24
L24-1
PAC
Fast PACs:
Slow PACs (SPACs):
PADs:
VME crates:
4
2
2
1
L24-2
PAC
L24-3
PAC
Tcav L24-8
PAC
PAD
PAD
Eth
recvr
C
P
U
E
V
R
VME Crate at S24
running
longitudinal,
beam-based
feedback.
S29
SPAC
S30
SPAC
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Beam Phase Monitor
R. Akre
A. Haase
B. Hong
D. Kotturi
V. Pacak
H. Schwarz
Preliminary Design Review
November 30, 2005
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Outline
•Purpose
•Specifications
•System outline
•Cavity
•Noise Levels
•Analysis
•Long Term Drifts
•Summary
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Laser Timing Stabilization Feedback
L INAC M DL R ef.
GU N R F F EEDB AC K
2856M Hz
R F R EF .
L CL S R F
Osci lla tor
In pu ts
GU N-C ELL 1-PH AS/AMPL
GU N-C ELL 2-PH AS/AMPL
L ASER
Actu ator s
GU N R F AC T UAT OR S
2856M H z R ef
PH ASE
ER RO R
GU N
PH AS
L 0A
Ac tu ator
L0, L 1 t o L2, L3
Phas e
PH ASE E RR OR
B etween
L 0, L 1 a nd L 2, L 3
GU N R F R EF.
GU N R F
AC TU AT ORS
L 0B
L ASER OSC IL LAT OR PH ASE
an d L ASER P OW ER
F EED B ACK
L 0-TC AV1
In pu ts
L ASER OSC . P H ASE
B UN CH C H ARGE
GU N-C ELL 1-AMPL /PH AS
GU N-C ELL 2-AMPL /PH AS
L ASER PH ASE & AM PLIT U DE
GU N R F AC T UAT OR S
B EAM PH ASE C AVIT Y
L 1-X
L ASER OSC IL LAT OR PH ASE
F EED B ACK
AM PL
L 1-S
In pu ts
B EAM PH ASE C AVIT Y
Actu ator s
L ASER PH ASE AC T UAT OR
K LYST R ON
AMPL IFI ER /
SLC C ON T ROL
GU N-F OR
Actu ator s
L ASER POW ER
L ASER PH ASE AC T UAT OR
T OROI D
RF GUN
PH AS
AM PL
L ASER OSC
OU T
L ASER R F R EF.
R ef erenc e
LASER
AMPLIFIER
W ATER T EMP
L ASER
POW ER
AC TU AT OR
GU N T U N E
F EED B ACK
L ASER PH ASE
AC TU AT OR
GU N-C ELL 1
L ASER OSC . P H ASE
L ASER PH ASE &
AMPL IT UD E?
In pu ts
GU N-F OR -PHAS
GU N-C ELL 1-PH AS
GU N-C ELL 2-PH AS
GU N-C ELL 2
Actu ator s
W ATER T EMP
B UN CH
C HAR GE
B EAM
PH ASE
C AVITY
Beam timing information from the beam phase monitor will be
used to apply corrections to the timing of the laser on the RF Gun.
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Specifications
Short term (2 second) timing jitter: 100fS rms
Long term (4 day) timing jitter: ±1pS
Range of the above accuracies is ±10pS
Data available at 120Hz
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
System Outline
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Cavity
Frequency = 2856MHz
Q = 6000
Time Constant = 700nS
Temperature Coefficient = 50kH/°C
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
System Critical Noise Levels and
Bandwidths
Cavity Signal – Bandwidth 500kHz
Local Oscillator – Noise Floor –143dBc/Hz
IF Filter – Bandwidth 4MHz
ADC – SNR at input 76dB
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
System Critical Noise Levels and Bandwidths
Monitor Port
30dBm pk
Coupler
30dBm pk
Attenuator
23dBm pk
3dBm pk
-174dBm/Hz
-174dBm/Hz
In Tunnel
Monitor Port
MIXER
Generated from 119MHz Oscillator
Expected SSB Phase Noise Levels
Offset Hz dBc/Hz @ 2830.5MHz
10
-82
100
-96
1k
-124
10k
-144
20k
-146
1
2830.5MHz Oscillator
April 20, 2006
LCLS LLRF
Filter - Butterworth
3rd order BandPass
2.5.5MHz Center
4.0MHz BW
2dB IL at 25.5MHz
Attenuator
LO RF
Beam Phase Cavity
IF
-3dBm pk
-146dBm/Hz
-143dBc/Hz
13dBm
-130dBm/Hz
-143dBc/Hz
ADC SNR 77dBFS
Amp
17dBm pk
2Vpp 10dBm pk
-129dBm/Hz
-143dBc/Hz
ADC LTC2208
2.25Vpp FS
Transformer coupled
102MHz Clock
Within filters BW
-135dBm/Hz
-143dBc/Hz
Beyond 5MHz from CF
<-155dBm/Hz
<-163dBc/Hz
Integrated Noise
-77dBc
Ron Akre, Dayle Kotturi
[email protected], [email protected]
ADC Linear
Technologies LTC2208
16Bit 130MHz
April 20, 2006
Ron Akre, Dayle Kotturi
SNR 77.6dBFS 30MHz
in Clock 130MHz
SFDR 95dB
[email protected],
[email protected]
LCLS LLRF
Phase
Analysis
Time
Calculated
Beam Phase at
Beam Time
April 20, 2006
LCLS LLRF
Measured
Data
Point 1
Measured
Data
Point 2
Ron Akre, Dayle Kotturi
[email protected], [email protected]
I & Q from Waveform
Digital Down Mixing and Normalization
25.5MHz Digitized Signal
1
Digitized
F ra ctio n A D C F u ll S ca le
0.8
Input Signal
0.6
0.4
0.2
0
0.2
0.4
.
0.6
0
10
20
30
40
50
60
Point Number
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Optimization
Optimal Points to use for analysis is 16
point average at points 18 and 120
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Analysis Results
Standard deviation of result = 1.1e-4 or 6.3fS rms jitter
Signal level 20dB lower will give 63fS rms jitter
Sensitivity to frequency change = 0.6fS/2.8kH freq change
Sensitivity to timing change over +-10deg = 1:1
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Long Term Drifts
80ft (1M deg) of ½ inch superflex has TC of 4ppm/degC
Water temp tolerance is +-0.1degF = +-400fS drift
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Summary
Short term (2 second) timing jitter: 100fS rms
63fS rms
Long term (4 day) timing jitter: ±1pS
±0.8pS
Range of the above accuracies is ±10pS
Results
Data available at 120Hz
Simple algorithm in integer arithmetic will allow this
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Feedback Page 1
LOCAL FEEDBACK
LOCAL FEEDBACK
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Feedback Page 2
GLOBAL FEEDBACK
LOCAL FEEDBACK
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Feedback Page 3
GLOBAL FEEDBACK
LOCAL FEEDBACK
LOCAL FEEDBACK
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Feedback Page 4
April 20, 2006
LCLS LLRF
GLOBAL FEEDBACK
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Feedback Page 5
GLOBAL FEEDBACK
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]
Feedback Page 6
April 20, 2006
LCLS LLRF
Ron Akre, Dayle Kotturi
[email protected], [email protected]