Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April 20, 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected].
Download ReportTranscript Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April 20, 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected].
Linac Coherent Light Source (LCLS) Low Level RF System Injector Turn-on December 2006 April 20, 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Safety First and Second and Third…..to Infinity Hazards in the LLRF system RF 1kW at 120Hz at 5uS = 0.6 Watts average, 2 Watt average amps at 2856MHz, 60W average amps at 476MHz Hazards – RF Burns Mitigation – Avoid contact with center conductor of energized connectors. All employees working with LLRF systems are required to have the proper training. 110VAC Connector Hazards - Shock Mitigation - Don’t touch conductors when plugging into outlet. All chassis are inspected by UL trained inspector. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Scope of Work – Injector Turn-on Linac Sector 0 RF Upgrade WBS 1.02.04.03.01 All 3 RF Chassis completed and Installed Control Module ready for test – John Dusatko Sector 20 RF distribution system WBS 1.02.04.03.02 Phase and Amplitude Controllers (PAC) – 6 units in Design Phase and Amplitude Detectors (PAD) – 1 unit in Design Phased Locked Oscillator – Use SPPS unit for Turn On LO Generator – Design 90% Complete and tested Multiplier – 476MHz to 2856MHz – Complete 4 distribution chassis - Complete Laser Phase Measurement – in Design – not required for turn on LLRF Control and Monitor System WBS 1.02.04.03.03 1 kW Solid State S-Band Amplifiers – 5 units – in Fab, 2 done PAD – 12 units as above in design PAC – 6 units as above in design Bunch Length Monitor Interface – awaiting Specs Beam Phase Cavity WBS 1.02.04.03.04 Will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners - Complete next month April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] LCLS Layout P. Emma April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] LLRF Control system spans Sector 20 off axis injector to beyond Sector 30 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] LCLS RF Jitter Tolerance Budget Lowest Noise Floor Requirement 0.5deg X-Band = 125fS Structure Fill time = 100nS Noise floor = -111dBc/Hz @ 11GHz 10MHz BW -134dBc/Hz @ 476MHz 0.50 X-band XRMS tolerance budget for <12% rms peak-current jitter or <0.1% rms final e− energy jitter. All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac. P. Emma April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Slow Drift Tolerance Limits (Top 4 rows for De/e < 5%, bottom 4 limited by feedback dynamic range) Gun-Laser Timing Bunch Charge Gun RF Phase Gun Relative Voltage L0,1,X,2,3 RF Phase (approx.) L0,1,X,2,3 RF Voltage (approx.) (Tolerances are peak values, not rms) 2.4* deg-S 3.2 % 2.3 deg-S 0.6 % 5 deg-S 5 % P. Emma, J, Wu * for synchronization, this tolerance might be set to 1 ps (without arrival-time measurement) April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Linac Sector 0 RF Upgrade LCLS must be compatible with the existing linac operation including PEP timing shifts MAIN LINAC (SECTOR 0) RF/TIMING SYSTEM Master Oscillator is located 1.3 miles from LCLS Injector Measurements on January 20, 2006 at Sector 21 show 30fS rms jitter in a bandwidth from 10Hz to 10MHz 1 476MHz MASTER OSCILLATOR PEP PHASE SHIFTER +-720 Degrees in 0.5mS LCLS LLRF MASTER AMPLIFIERS 476MHz SLC COUNTDOWN CHASSIS 476MHz Divide to 8.5MHz 8.5MHz 360Hz Line Sync. 360Hz PEP PHASE SHIFT ON MAIN DRIVE LINE April 20, 2006 Sum Fiducial to RF Master Trigger Generator MTG Syncs Fiducial to 8.5MHz Damping Ring and 360Hz Power Line Main Drive Line (MDL) 476MHz RF plus 360Hz Fiducial To: Main Linac - 2 miles Damping Rings PEP NLCTA End Station A FFTB ORION 1.3 Miles to LCLS Injector Fiducial Generator Syncronized to: 360Hz Power Line 8.5MHz Damping Ring 476MHz RF Distribution MDL RF with TIMING Pulse – Sync to DR Ron Akre, Dayle Kotturi [email protected], [email protected] Linac Sector 0 RF Upgrade Status New Low Noise Master Oscillator – Done New Low Noise PEP Phase Shifter RF Chassis – Done Control Chassis – In Test New Low Noise Master Amplifier – Done Main Drive Line Coupler in Sector 21 – Done Measurements Noise floor on 476MHz of -156dBc/Hz Integrated jitter from 10Hz to 10MHz of 30fS April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Sector 20 RF Distribution M a in Dr ive Line ( M DL ) 476 M Hz R F 360 Hz Fiducial From Secto r 0 ( 2km ) LCLS Sector 20 RF Reference System M D L to Linac Secto rs 21 to 30 PEP and R esear ch Yar d RF HUT Coupler 476MHz Ref. 100uW FSJ4-50 0.8dB/30ft 476 M Hz LASE R LO C K Re fere nce LCLS 476MHz PLL R F C O NTR O L IQ M odulator T IM ING SY ST EM F IDO 120 Hz TRBR Track/H old TRBR 119 M Hz R F C O NTR O L O ffset adjust LA S E R Sample and Hold PLL with DAC offset adjust and Error Monitor LASER Diode Output 2830.5MHz LO Gen 119 M Hz P hase RF MONITOR 119 M Hz 0dB m O UT 4x 47 6M H z 13d Bm O U T IQ M odulato r to adjust 283 0.5M Hz to 2 856M Hz Pha se +13dBm in +13dBm in Divide 112 to 25.5 M Hz SSB M ix to 28 30.5M Hz 4X to 102 M Hz 476MHz to 2856MHz MULTIPLIER 476MHz to 2856MHz MULTIPLIER 25.5M H z out +7dBm RF MONITOR R F C O NTR O L IQ M odulator 102 M Hz o ut 2 830.5 M Hz o ut +17dBm RF CONTROL IQ Modulator RF CONTROL IQ Modulator RF CONTROL IQ Modulator 2856MHz 2W att Amplifier 102MHz 2W att Amplifier 2830.5MHz 2W att Amplifier Diode Detector Diode Detector Diode Detector 2856MHz 16 W ay Distribution 20dBm each G un L0A L0B L0TC AV L1S L1X LIN AC EXPE RIM E NTS 102 M Hz Digitizer Clocks 16 W ay Distr ibution 20d Bm ea ch G un L0A L0B L0TC AV L1S L1X LO P hase M onitor RF MONITOR 2856MHz from Sector 21 IQ Modulator Control Mixer Monitor 2856MHz +7dBm +17dBm 285 6M H z LASE R D io de Pha se Noise M e asure m ent 285 6M H z in LO P hase M onitor RF MONITOR 283 0.5M Hz LO 16 W ay Distr ibution 20d Bm ea ch G un L0A L0B L0TC AV L1S L1X Phase Critical Cables Laser <140ft < 700fSpp Gun < 100ft < 400fSpp LO P hase M onitor RF MONITOR April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Sector 20 RF Distribution System Status Phase Locked Oscillator – 476MHz Initial Turn On use SPPS Oscillator May modify control to achieve better stability during 2007 LO Generator – 2830.5MHz Design complete – Prototype tested – 25MHz SSB modulator board done 2856MHz IQ Modulator prototype near completion Multipliers - 476MHz to 2856MHz – Done Phase and Amplitude Control (PAC) Unit In Design – IQ Modulators and Amplifiers selected – See Next Section Phase and Amplitude Detector (PAD) Unit In Design – Testing Mixers, Amplifiers, Filters – See Next Section Amplifiers – not ordered yet Laser Phase Measurement System – Design Started April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] LLRF Control System Distributed Control System Microcontroller based IOC Control and Detector Modules Ethernet Switch Central Feedback Computer April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] LLRF Control and Monitor System Klystron Station TRIG LCLS RF HUT 2830.5MHz LO Amp / Splitter ENET Trig & Ethernet From Klystron Drive Coupler TCAV 20-5 RF Gun 20-6 L0A 20-7 L0B 20-8 L1S 21-1 L1X 21-2 3dBm LO PAC OUT PAD KLY BEAM Voltage SPARE 102MHz Clock In Out LCLS RF HUT 102MHz Clock Amp / Splitter TCAV 20-5 RF Gun 20-6 L0A 20-7 L0B 20-8 L1S 21-1 L1X 21-2 240ft = 2.5dB 1/2 Superflex = 1.6dB LDF4 = 3dB LDF1 23dBm 13dBm 102MHz Clock In LCLS RF HUT 2856MHz RF Amp / Splitter TCAV 20-5 RF Gun 20-6 L0A 20-7 L0B 20-8 L1S 21-1 L1X 21-2 240ft = 17dB 1/2 Superflex = 10dB LDF4 SSSB PAC 3dBm Coupled Out In 2856MHz Out SSSB Control 17dBm Coupled Out In 2856MHz Out To IPA Klystron Drive Control & TRIG Trig & Ethernet ENET TRIG 140ft = 25dB 3/8 Superflex RF HUT April 20, 2006 LCLS LLRF KLYSTRON STATION Ron Akre, Dayle Kotturi [email protected], [email protected] LLRF Control and Monitor System Status 1 kW Solid State S-Band Amplifiers – 5 units 1kW amplifier modules currently in test Existing amplifier support design under review Phase and Amplitude Detectors – 11 dual chan units Preliminary Design Complete Evaluating amplifiers, mixers, and filters Phase and Amplitude Controllers – 6 single chan units Preliminary design complete Evaluating mixers and amplifiers Bunch Length Monitor Interface Need Specifications April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Beam Phase Cavity Status Measurement of beam phase to RF reference phase. The result will be used to correct timing of laser to RF reference. Cavity is located between L0A and L0B. Electronics will use single channel of PAD Chassis Pill box cavity with 2 probes and 4 tuners Cavity Electronics will use single channel of RF Monitor Cavity in fabrication Complete – May 2006 Bake – June 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Controls Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for Tcavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OS Begin RF processing of high-powered structures June 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for diagnostics April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Sector 20 PAC and PAD Control VME IOC Ethernet Switch Arcturus Coldfire 13 PADs FIFO ADC 13 PACs FPGA DAC April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] EPICS PANELS Single Pulse Diagnostic Panels for PADs are Running Remaining Software History Buffer Select PVs Multi pulse data analysis, correlation plots Local RF Feedback loops Links to global Feedback loops April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] RF Status Summary Linac New Low Noise Source – RF components installed, Controls Feb06 RF Distribution – Prototyping underway (R. Akre, B.Hong, H. Schwarz) Monitor Controller Board (J. Gold, R. Akre, Till Straumann) Single channel prototype for ADS5500 tested to specifications Four channel ADS5500 board – layout complete (SNR 70dBFS) Switched to LTC2208 16bit 130MSPS ADC (Prototype in test) (SNR 77dBFS) RF Monitor Board in preliminary design (H. Schwarz, B.Hong) Testing mixers Control Boards (J. Olsen) Fast Control Board – All but slow ADCs for temp and voltages tested and low level drivers written Slow control board – use fast board RF Control Board in preliminary design (H. Schwarz, B. Hong) Software (D. Kotturi, Till Straumann) EPICS on RTEMS on Microcontroller done Drivers – data collection interrupt routine done Algorithms – PAD 90% complete PAC in progress Calibration routines – Need specifications Collision free Ethernet April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] LLRF Schedule RF Distribution Design Complete May 2006 RF Hut Distribution System installed August 2006 PAC design Complete June 2006 PAD design Complete July 2006 PAC and PAD minimal operational software complete Ethernet testing with multiple PACs and PADs??? Single S-Band station – hardware installed Sept 2006 4 other S-Band Stations – November 2006 Feedback software interfacing??? Test and debug with Klystrons On – December 2006 X-Band Station January 2007 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] End of LLRF RF Talk Backup for RF Talk Mostly Correct April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] DESIGN PHILOSOPHY Reliability is inversely proportional to the number of connectors. Stability is inversely proportional to the number of connectors. Measurement accuracy is inversely proportional to the number of connectors and the amount of Teflon,which is typically found in connectors. Cost of maintenance is proportional to the number of connectors. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Electro-Optical Sampling 200 mm thick ZnTe crystal Single-Shot e- Timing Jitter (20 Shots) <300 fs Ti:Sapphire laser e- temporal information is encoded on transverse profile of laser beam 170 fs rms Adrian Cavalieri et al., U. Mich. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] MPS – PPS Issues Addressed by Controls Group Not Reviewed Here Vacuum New vacuum system summary to be fed to each klystron existing MKSU. PPS System Injector modulators will be interlocked by Injector PPS system. PPS requirements for radiation from the injector transverse accelerator needs to be determined. Radiation levels will be measured during testing in the Klystron Test Lab – Feb 06. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Bandwidth of S-Band System Upper Frequency Limit – 10MHz Beam-RF interaction BW due to structure fill time < 1.5MHz S-Band Accelerators and Gun ~10MHz X-Band and S-Band T Cav Structure RF Bandwidth ~ 16MHz 5045 Klystron ~ 10MHz Lower Frequency Limit – 10kHz Fill time of SLED Cavity = 3.5uS about 100kHz Laser – Needs to be measured ~ 10kHz April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Noise Levels RF Reference Single Side Band (SSB) Noise Floor 2856MHz RF Distribution -144dBc/Hz -174dBc/Hz @ 119MHz (24x = +28dB +2 for multiplier) 2830.5MHz Local Oscillator -138dBc/Hz Integrated Noise -138dBc/Hz at 10MHz = -65dBc = 32fS rms SNR = 65dB for phase noise Added noise from MIXER (LO noise same as RF) SNR of 62dB ADC noise levels SNR of 70dB – 14bit ADS5500 at 102MSPS April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Phase Noise – Linac Sector 0 OLD MASTER OSCILLATOR -133dBc/Hz at 476MHz 340fSrms jitter in 10MHz BW NEW MASTER OSCILLATOR -153dBc/Hz at 476 MHz 34fSrms jitter in 10MHz BW Integrated Noise - Timing Jitter fs rms Integral end Integral start Aug 17, 2004 Sector 30 Jan 20, 2006 Sector 21 April 20, 2006 LCLS LLRF 5MHz 1M 1k 10kHz 100 100k 10k 10 27 30 33 38 75 82 15 19 20 20 8 17 Ron Akre, Dayle Kotturi [email protected], [email protected] Sector 20 RF Distribution Cable Errors Temperature Coefficient of 2.8ppm/ºF and Cable length is 1200ºS/ft All Cables except LASER are less than 100ft Distances feet and errors in degrees S total range RF Hut Down Linac Wall Injector Total Unit Ft degS ft degS ft degS ft degS ft degS DegS Laser 8 0.054 25 0.017 10 0.014 10 0.007 85 0.58 0.68 Gun 8 0.054 25 0.017 10 0.014 10 0.007 40 0.27 0.37 L0-A 8 0.054 25 0.017 10 0.014 10 0.007 30 0.21 0.31 B Phas 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-B 8 0.054 25 0.017 10 0.014 10 0.007 20 0.14 0.24 L0-T 8 0.054 25 0.017 10 0.014 10 0.007 10 0.07 0.17 L1-S 8 0.054 25 0.017 50 0.068 0.14 L1-X 8 0.054 25 0.017 60 0.081 0.16 Temperature Variations: RF Hut ±1ºF : Penetration ±0.1ºF : Linac : ±0.2ºF Shield Wall ±0.1ºF : Injector ±1ºF April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] RF System Topology / Specifications Linac Sector 0 RF Number of cables per device Reference cables are MDL 8ft and can drift +-50fS L0, L1 - 5 Klystrons Specifications 100fS rms jitter +-2.3pS drift 476MHz PLL 2830.5MHz LO Amp / Splitter +-5pS drift 1 RF Gun 5 L0A Phase Cavity L0B L3 - 6 Sectors Specifications 150fS rms jitter PAD Laser L2 - 4 Sectors Specifications 70fS rms jitter Cable Drift Based on L1S L1X +-5pS drift L2 Ref 2 2 2 4 2 1 Laser RF Gun L0A Phase Cavity L0B L1S L1X L2 Ref Temperature variations and temp co of 5ppm/degC +-680fS Laser +-370fS RF Gun +-310fS +-240fS +-240fS +-140fS +-160fS +-500fS RF HUT April 20, 2006 LCLS LLRF Most Devices are in tunnel Ron Akre, Dayle Kotturi [email protected], [email protected] L0A Phase Cavity L0B L1S L1X L2 Ref RF Monitor Signal Counts ADC Chan Cnt Distribution (5~2850MHz, 4<500MHz) RF Gun Beam Phase Cavity L0-A Accelerator L0-B Accelerator L0-T Transverse Accelerator L1-S Station 21-1 B, C, and D Acc L1-X X-Band accelerator X-Band S25-Tcav S24-1, 2, & 3 Feedback S29 and S30 Feedback Total Chassis Total into Hut IOC April 20, 2006 LCLS LLRF 4 9 2 4 4 4 6 5 4 0 0 Chassis Count/Location 1Kly 1Kly 1Kly 1Kly 1Kly 1Kly 1Kly 7Kly 12 Ron Akre, Dayle Kotturi [email protected], [email protected] 1Hut 1.5Hut 0.5Hut 0.5Hut 0.5Hut 0.5Hut 1.0Hut 0.5Hut 6Hut RF Control Signal Counts Distribution (3~2850MHz, 3<500MHz) RF Gun Beam Phase Cavity L0-A Accelerator L0-B Accelerator L0-T Transverse Accelerator L1-S Station 21-1 B, C, and D accelerators L1-X X-Band accelerator X-Band S25-Tcav S24-1, 2, & 3 Feedback S29 and S30 Feedback Total modulators Totals at ~2856MHz Total into Hut IOC April 20, 2006 LCLS LLRF 11 Fast 6 IQ Mod 1 Klystron 1 IQ mod 1 Klystron 1 Klystron 1 Klystron 1 Klystron 1 IQ Mod 1 Klystron 3 Klystrons 2 IQ modulators 476MHz 8 Slow 19 modulators 14 modulators 14 modulators Ron Akre, Dayle Kotturi [email protected], [email protected] LLRF Control and Monitor System LLRF Control and Monitor System 1 kW Solid State S-Band Amplifiers – 5 units Phase and Amplitude Monitors – 12 units Phase and Amplitude Controllers – 6 units Bunch Length Monitor Interface – Need Specifications April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] RF Control Required 13 Units 3 I C o ntrol Includes Distribution BX M P1 007 I R F In 1 LO RF 2 17 dBm R F O ut 0d Bm 17 dBm 4 Q 28 56M H z In put M onito r Q C on tro l 28 56M H z O utpu t M on itor 2850M H z IQ M odulator RF Control Module consist of the following: Input Coupler, IQ Modulator, Amplifier, Output Coupler Filters for I and Q inputs April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] RF Monitor Required 13 Chassis for Injector – Includes Distribution LO 2830.5MHz : RF 2856MHz IF 25.5MHz (8.5MHz x 3 in sync with timing fiducial) Double-Balanced Mixer Mixer IF to Amp and then Low Pass Filter Filter output to ADC sampling at 102MSPS RF LO 2830.5MHz Local Osc. A m p lifie r IF M IX E R 2856MHz RF Signal April 20, 2006 LCLS LLRF To ADC LTC2208 SNR = 77dBFS 2 5 .5 M Hz B P FIL TE R 102MSPS Ron Akre, Dayle Kotturi [email protected], [email protected] 1 kW Solid State S-Band Amplifiers Design Complete Two Units on the Shelf Modules in house – and tested Support parts – Some parts in house Power Supplies, relays, chassis on order April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] SLAC Linac RF – New Control MDL 476MHz Next Sector 1mW 1W 6X 2856MHz Existing Phase Reference Line SubBooster 3 Sub Drive Line The new control system will tie in to the IPA Chassis with 1kW of drive power available. Reference will be from the existing phase reference line or the injector new RF reference To Next Klystron I 3kW 1 High Power Phase Shifter Attenuator 20mW Phase & Amplitude Detector Klystron SLED 200MW April 20, 2006 LCLS LLRF -45dB Accelerator 1kW Amp 2856MHz Q 4 IPA Existing System LO 2 RF IQ Modulator I and Q will be controlled with a 16bit DAC running at 119MHz. Waveforms to the DAC will be set in an FPGA through a microcontroller running EPICS on RTEMS. Ron Akre, Dayle Kotturi [email protected], [email protected] Controls Talk April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] LLRF Controls Outline Requirements External Interfaces Schedule Date Needed Prototype Completion Date Hardware Order Date Installation Test Period Design Design Maturity (what reviews have been had) State of Wiring Information State of Prototype April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Requirements At 120 Hz, meet phase/amp noise levels defined as: 0.1% rms amplitude 100 fs rms in S-band (fill time = 850 ns) 125 fs rms in X-band (fill time = 100 ns) All tolerances are rms levels and the voltage and phase tolerances per klystron for L2 and L3 are Nk larger, assuming uncorrelated errors, where Nk is the number of klystrons per linac (L2 has 28; L3 has 48) April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Engineering Requirements When beam is present, control will be done by beam-based longitudinal feedback (except for Tcavs); when beam is absent, control will be done by local phase and amplitude controller (PAC) Adhere to LCLS Controls Group standards: RTEMS, EPICS, Channel Access protocol Ref: Why RTEMS? Study of open source real-time OS Begin RF processing of high-powered structures May 20, 2006 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] External Interfaces LLRF to LCLS global control system PVs available for edm screens, archiving, etc over controls network LLRF VME to beam-based longitudinal feedback from feedback: phase and amplitude corrections at 120 Hz over private ethernet from LLRF: phase and amplitude values (internal) LLRF VME to LLRF microcontrollers from VME: triggers, corrected phase and amplitude from microcontrollers: phase and amplitude averaged values at 120 Hz, raw phase and amplitude values for debug April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] External Interfaces: Laser - Tcav RF Phase and Amplitude correction at 120 Hz for: laser, gun, L0-A, L0-B, L1-S, L1-X, T cav In-house modules sharing VME crate for timing triggers 476 MHz RF Reference clock distributed to all 30 sectors in the Linac and beyond Temperature monitors RF Reference/4 = 119 MHz stabilized to 50 fs jitter T Cav L1-X L1-S L0-B L0-A gun Laser and RF ref PAD I and Q Demodulator F I F O s A D C Coldfire CPU running RTEMS and EPICS D A C s l o w C P U RF Reference*6 = 2856 MHz stabilized to 50 fs jitter VME Crate at S20 running longitudinal, beam-based feedback E V R PAC Coldfire CPU running RTEMS and EPICS FPGA Private ethernet 4 kBytes at 120 Hz D A C D A C 1 trigger for 4 channels of 1k samples s l o w Private ethernet 8 kBytes at 120 Hz Private ethernet Controls gigabit ethernet (interface to MCC) IQ Modulator gives phase and amplitude control 1 trigger to travel up to ½ sector away All except laser RF La ) I &Q F t (I r R Ou ato RF ler or e rat cc ele A cc c/ /A Q) na ac Li z (I& Q) Lin H (I& 20 z F 1 MH r R 19 se 1 La r RF se 100 mW 119 MHz Laser Oscillator Solid State Sub Booster 1 kW photodiode Amps Klystron 119 MHz 120 Hz 60 MW photodiode UV n SLED cavity Gun & (I NB: For the gun, SLED cavity is shorted out Q ) HPRF 240 MW 1 kW 1 kW 60 MW 10' accelerator April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] External Interfaces: L2-L3 RF Phase and Amplitude correction at 120 Hz for: laser, gun, L0-A, L0-B, L1-S, L1-X, T cav In-house modules sharing VME crate for timing triggers 476 MHz RF Reference clock distributed to all 30 sectors in the Linac and beyond Temperature monitors RF Reference/4 = 119 MHz stabilized to 50 fs jitter T Cav L1-X L1-S L0-B L0-A gun Laser and RF ref PAD I and Q Demodulator F I F O s A D C Coldfire CPU running RTEMS and EPICS D A C s l o w C P U RF Reference*6 = 2856 MHz stabilized to 50 fs jitter VME Crate at S20 running longitudinal, beam-based feedback E V R PAC Coldfire CPU running RTEMS and EPICS FPGA Private ethernet 4 kBytes at 120 Hz D A C D A C 1 trigger for 4 channels of 1k samples s l o w Private ethernet 8 kBytes at 120 Hz Private ethernet Controls gigabit ethernet (interface to MCC) IQ Modulator gives phase and amplitude control 1 trigger to travel up to ½ sector away All except laser RF La ) I &Q F t (I r R Ou ato RF ler or e rat cc ele A cc c/ /A Q) na ac Li z (I& Q) Lin H (I& 20 z F 1 MH r R 19 se 1 La r RF se 100 mW 119 MHz Laser Oscillator Solid State Sub Booster 1 kW photodiode Amps Klystron 119 MHz 120 Hz 60 MW photodiode UV n SLED cavity Gun & (I NB: For the gun, SLED cavity is shorted out Q ) HPRF 240 MW 1 kW 1 kW 60 MW 10' accelerator April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Design Design maturity (what reviews have been had): RF/Timing Design, DOE Review, August 11, 2004 Akre_FAC_Oct04_RF_Timing, FAC Review, October, 2004 Low Level RF Controls Design, LCLS Week, January 25-27, 2005 Low Level RF, Lehman Review, May 10-12, 2005 LLRF Plans for Development and Testing of Controls, LCLS Week, July 21, 2005 Low Level RF Design, Presentation for Controls Group, Sept. 13, 2005 LLRF Preliminary Design review, SLAC, September 26, 2005 LCLS LLRF Control System - Kotturi, LLRF Workshop, CERN, October 10-13, 2005 LCLS LLRF System - Hong, LLRF Workshop, CERN, October 10-13, 2005 LLRF and Beam-based Longitudinal Feedback Readiness - Kotturi/Akre, LCLS Week, SLAC, October 24-26, 2005 LCLS Week LLRF and feedback - Kotturi/Allison, LCLS Week, SLAC, October 24-26, 2005 LLRF, LCLS System Concept Review/Preliminary Design Review, SLAC, November 16-17, 2005 Comments LLRF Beam Phase Cavity Preliminary Design review, SLAC, November 30, 2005 Docs at: http://www.slac.stanford.edu/grp/lcls/controls/global/subsystems/llrf State of wiring: percent complete Captar input will be given at time of presentation State of prototype: PAD (1 chan ADC) and PAC boards built (shown on next pages).Testing. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] PAD – the monitor board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] PAD – the monitor board RF Board Line Drivers Filters 2 X 16 bit ADC 119 or 102MHz Clock LTC2208 Transformer Coupled Inputs Control Board FIFO 2 X 1k words 16bit DATA 25.5MHz IF 16 bit DATA Chan. 1 IF WCLK RF LO 16bit DATA CS/ CLK MIXER Chan. 2 IF WCLK RF CHAN 2 INPUT CONTROL / Arcturus uC5282 Microcontroller Module with 10/100 Ethernet RF LO MIXER Control LO INPUT RF - 25.5MHz April 20, 2006 LCLS LLRF EXTERNAL CLOCK 102MHz CPLD EXTERNAL TRIGGER 120Hz Ron Akre, Dayle Kotturi [email protected], [email protected] ETHERNET RF CHAN 1 INPUT PAC – the control board April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] PAC – the control board EXTERNAL TRIGGER TRIGGER Monitor TTL 120Hz 60nS NIM CLOCK 119MHz SSSB Chassis MONITOR PORTS RF BOARD MATCHING FILTER NETWORK I&Q MODULATOR 3 16bit DATA 1 LO 2 RF 4 Q XILINX SPARTAN 3 FPGA 16 bit DATA CS/ CLK CONTROL / Arcturus uC5282 Microcontroller Module with 10/100 Ethernet AD8099 Diff Amp 2856MHz Ref Control Temperature Monitor DC Power Supply Monitors t Control Temperature Monitor t Thermocouples DC Power Supplies April 20, 2006 LCLS LLRF ADCs Control Board Ron Akre, Dayle Kotturi [email protected], [email protected] ETHERNET I CLK MAX5875 2 X 16 bit DAC 119MHz Clock 16bit DATA (1MHz to 200MHz) Q CLK I RF OUTPUT To SSSB Temperature Monitor Forward Power 0-?V Reflected Power 0-?V Over Temp 0 or 12V Power Supplie +12V Power Supply -12V SSSB Trig TTL 17 to 30uS Additional Slides The following two pages show an overview of the LLRF control modules. From these diagrams, counts of module types, as well as function and location are seen. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Overview of LLRF at Sector 20 RF phase and amplitude correction and global feedback at 120 Hz for LCLS LINAC S20 RF Dist’n SPAC SPAC SPAC SPAC SPAC PAD PAC Laser Gun L0-A L0-B PAC PAD PAD Key: Indicates located in RF Hut Otherwise at Klystron SPAC PAD PAC PAD PAD PAD PAD Indicates may be needed The maybe is included in counts below PAC PAD PAD L0-Tcav Eth recvr PAC PAD PAD PAC PAD PAD PAD L1-S C P U VME Crate at S20 running longitudinal, beam-based feedback. E V R L1-X PAC PAD Beam Phase Monitor PAC PAD PAD PAD S20 Fast PACs: Slow PACs (SPACs): PADs: VME crates: April 20, 2006 LCLS LLRF 8 6 19 1 Ron Akre, Dayle Kotturi [email protected], [email protected] Overview of LLRF at Sector 24 RF phase and amplitude correction and global feedback at 120 Hz for LCLS LINAC S20 S24 L24-1 PAC Fast PACs: Slow PACs (SPACs): PADs: VME crates: 4 2 2 1 L24-2 PAC L24-3 PAC Tcav L24-8 PAC PAD PAD Eth recvr C P U E V R VME Crate at S24 running longitudinal, beam-based feedback. S29 SPAC S30 SPAC April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Beam Phase Monitor R. Akre A. Haase B. Hong D. Kotturi V. Pacak H. Schwarz Preliminary Design Review November 30, 2005 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Outline •Purpose •Specifications •System outline •Cavity •Noise Levels •Analysis •Long Term Drifts •Summary April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Laser Timing Stabilization Feedback L INAC M DL R ef. GU N R F F EEDB AC K 2856M Hz R F R EF . L CL S R F Osci lla tor In pu ts GU N-C ELL 1-PH AS/AMPL GU N-C ELL 2-PH AS/AMPL L ASER Actu ator s GU N R F AC T UAT OR S 2856M H z R ef PH ASE ER RO R GU N PH AS L 0A Ac tu ator L0, L 1 t o L2, L3 Phas e PH ASE E RR OR B etween L 0, L 1 a nd L 2, L 3 GU N R F R EF. GU N R F AC TU AT ORS L 0B L ASER OSC IL LAT OR PH ASE an d L ASER P OW ER F EED B ACK L 0-TC AV1 In pu ts L ASER OSC . P H ASE B UN CH C H ARGE GU N-C ELL 1-AMPL /PH AS GU N-C ELL 2-AMPL /PH AS L ASER PH ASE & AM PLIT U DE GU N R F AC T UAT OR S B EAM PH ASE C AVIT Y L 1-X L ASER OSC IL LAT OR PH ASE F EED B ACK AM PL L 1-S In pu ts B EAM PH ASE C AVIT Y Actu ator s L ASER PH ASE AC T UAT OR K LYST R ON AMPL IFI ER / SLC C ON T ROL GU N-F OR Actu ator s L ASER POW ER L ASER PH ASE AC T UAT OR T OROI D RF GUN PH AS AM PL L ASER OSC OU T L ASER R F R EF. R ef erenc e LASER AMPLIFIER W ATER T EMP L ASER POW ER AC TU AT OR GU N T U N E F EED B ACK L ASER PH ASE AC TU AT OR GU N-C ELL 1 L ASER OSC . P H ASE L ASER PH ASE & AMPL IT UD E? In pu ts GU N-F OR -PHAS GU N-C ELL 1-PH AS GU N-C ELL 2-PH AS GU N-C ELL 2 Actu ator s W ATER T EMP B UN CH C HAR GE B EAM PH ASE C AVITY Beam timing information from the beam phase monitor will be used to apply corrections to the timing of the laser on the RF Gun. April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Specifications Short term (2 second) timing jitter: 100fS rms Long term (4 day) timing jitter: ±1pS Range of the above accuracies is ±10pS Data available at 120Hz April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] System Outline April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Cavity Frequency = 2856MHz Q = 6000 Time Constant = 700nS Temperature Coefficient = 50kH/°C April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] System Critical Noise Levels and Bandwidths Cavity Signal – Bandwidth 500kHz Local Oscillator – Noise Floor –143dBc/Hz IF Filter – Bandwidth 4MHz ADC – SNR at input 76dB April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] System Critical Noise Levels and Bandwidths Monitor Port 30dBm pk Coupler 30dBm pk Attenuator 23dBm pk 3dBm pk -174dBm/Hz -174dBm/Hz In Tunnel Monitor Port MIXER Generated from 119MHz Oscillator Expected SSB Phase Noise Levels Offset Hz dBc/Hz @ 2830.5MHz 10 -82 100 -96 1k -124 10k -144 20k -146 1 2830.5MHz Oscillator April 20, 2006 LCLS LLRF Filter - Butterworth 3rd order BandPass 2.5.5MHz Center 4.0MHz BW 2dB IL at 25.5MHz Attenuator LO RF Beam Phase Cavity IF -3dBm pk -146dBm/Hz -143dBc/Hz 13dBm -130dBm/Hz -143dBc/Hz ADC SNR 77dBFS Amp 17dBm pk 2Vpp 10dBm pk -129dBm/Hz -143dBc/Hz ADC LTC2208 2.25Vpp FS Transformer coupled 102MHz Clock Within filters BW -135dBm/Hz -143dBc/Hz Beyond 5MHz from CF <-155dBm/Hz <-163dBc/Hz Integrated Noise -77dBc Ron Akre, Dayle Kotturi [email protected], [email protected] ADC Linear Technologies LTC2208 16Bit 130MHz April 20, 2006 Ron Akre, Dayle Kotturi SNR 77.6dBFS 30MHz in Clock 130MHz SFDR 95dB [email protected], [email protected] LCLS LLRF Phase Analysis Time Calculated Beam Phase at Beam Time April 20, 2006 LCLS LLRF Measured Data Point 1 Measured Data Point 2 Ron Akre, Dayle Kotturi [email protected], [email protected] I & Q from Waveform Digital Down Mixing and Normalization 25.5MHz Digitized Signal 1 Digitized F ra ctio n A D C F u ll S ca le 0.8 Input Signal 0.6 0.4 0.2 0 0.2 0.4 . 0.6 0 10 20 30 40 50 60 Point Number April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Optimization Optimal Points to use for analysis is 16 point average at points 18 and 120 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Analysis Results Standard deviation of result = 1.1e-4 or 6.3fS rms jitter Signal level 20dB lower will give 63fS rms jitter Sensitivity to frequency change = 0.6fS/2.8kH freq change Sensitivity to timing change over +-10deg = 1:1 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Long Term Drifts 80ft (1M deg) of ½ inch superflex has TC of 4ppm/degC Water temp tolerance is +-0.1degF = +-400fS drift April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Summary Short term (2 second) timing jitter: 100fS rms 63fS rms Long term (4 day) timing jitter: ±1pS ±0.8pS Range of the above accuracies is ±10pS Results Data available at 120Hz Simple algorithm in integer arithmetic will allow this April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Feedback Page 1 LOCAL FEEDBACK LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Feedback Page 2 GLOBAL FEEDBACK LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Feedback Page 3 GLOBAL FEEDBACK LOCAL FEEDBACK LOCAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Feedback Page 4 April 20, 2006 LCLS LLRF GLOBAL FEEDBACK Ron Akre, Dayle Kotturi [email protected], [email protected] Feedback Page 5 GLOBAL FEEDBACK April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected] Feedback Page 6 April 20, 2006 LCLS LLRF Ron Akre, Dayle Kotturi [email protected], [email protected]