Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE New optical remote sensing instruments for water vapour monitoring developed at the Swiss Federal Institute of.

Download Report

Transcript Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE New optical remote sensing instruments for water vapour monitoring developed at the Swiss Federal Institute of.

Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
New optical remote sensing instruments for
water vapour monitoring developed at the
Swiss Federal Institute of Technology
Lausanne - EPFL
Valentin Simeonov*, Todor Dinoev, Pablo Ristori, Marian Taslakov, Mark
Parlange, Ilya Serikov and Hubert van den Bergh
Swiss Federal Institute of Technology –Lausanne Switzerland
Bertrand Calpini
MeteoSiss - Payerne
Yuri Arshinov and Sergei Bobrovnikov
IOA –Tomsk - Russia
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Outline
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
•Lidar principle
•Automated water vapor Raman lidar for operational use at MeteoSwiss
•High spatial and temporal resolution water vapor /temperature Raman lidar
•Mid IR, long open-path system for trace gas, water vapor and temperature monitoring
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Lidar principle
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
FOV
Raman method for water vapor
measurements
R
R
S(R)
A
P( R 2  ( R)T ( R)
P
R)
P
S ( R )  Pk
0
A
WMO TECO 4-6 December 2006
w( R)  n
 SN 2
( R)  
 SO
 2




S H 2O ( R)
( )
S N 2 ( R)
( R)
R

exp  N 2 ( r )dr
 R0

Water vapor Raman lidar for
operational use in meteorology
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Lidar specifications
Water vapor mixing ratio
Aerosol
Detection limit 0.01 g/kg
Extinction & 355 nm
Backscatter & 355 nm
Statistical error < 10 %
Height range / resolution
Daytime 150-5’000 m / 30-400 m
Night time 150 – 10’000 m / 30-600 m
Acquisition time 15-30 min
WMO TECO 4-6 December 2006
Requirements
 Fully automated, continuous operation
 Long term stability
 High reliability > 85% technical availability
 Eye safety
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
General lidar design
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Transmitter
Nd:YAG laser
400 mJ & 355 nm
30 Hz rep. rate
Beam expander 15 X
To the polychromator
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Eye safety
Nominal Hazard Distance
400
Vertical Heigth, m
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
300
200
EYE and SKIN
safe zone
100
Danger
zone
0
0
1
2
3
4
5
6
7
8
9
10
Time of Exposure, s
Laser energy 400 mJ @ 355 nm, beam diameter 140 mm (after expansion)
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
General lidar design
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Receiver (NFOW/NB)
Narrow Field of View
Narrow band
Matrix telescope of
four Ø 30 cm mirrors
0.2 mrad FOV
To the polychromator
WMO TECO 4-6 December 2006
Spectral isolation and detection
Diffraction grating polychromator
•
•
•
•
•
Long term stability
Narrow band detection – 0.3 nm pass-band (possible adjustment)
Oxygen channel – aerosol correction
1012 suppression of the laser line
40% efficiency
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Polychromator view
Diffraction
grating
Parabolic
mirror
Photomultipliers
Doublet lens
Fiber holder &
collimating lens
WMO TECO 4-6 December 2006
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Lidar cabin
2.4 m
WMO TECO 4-6 December 2006
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Outside view
WMO TECO 4-6 December 2006
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Inside view
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Telescope
Fibers
Output of the
Beam Expander
Telescope
Fibers
Polychromator
Mirrors
Laser
WMO TECO 4-6 December 2006
Data treatment module
•Raw data correction
•H2O retrieval with a
predefined error (space
resolution variable)
•Data storage
Input parameters
• Averaging time
• Accuracy
• Vertical resolution limits
• Calibration coefficient
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Data treatment module
WMO TECO 4-6 December 2006
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Last data
WMO TECO 4-6 December 2006
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Future steps
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Experimental operation in Lausanne till May 2007
Calibration
- with tethered balloon (Snow White)
- with GPS data
- absolute calibration tests
Reliability tests
Verification with balloon measurements in Payerne
Start of operation at MeteoSwiss -July 2008
WMO TECO 4-6 December 2006
High spatial and temporal resolution
Raman lidar for water vapor and
temperature measurements
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Goal: Study of turbulent boundary layer
intercomparison with LES model
Lidar specifications
Fixed spatial resolution of 1.5 m
Temporal resolution 1 s
Operational range 10-500 m
Water vapor and temperature statistical error < 10 %
Scanning capability
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
7
x 10
-30
Edge Filter Transmission
6
---- Pure Rotational Raman N2 & O2
Intensity [a.u.]
5
4
---- O2
Ro-vibrational Raman
---- N2
Ro-vibrational Raman
---- H2O Ro-vibrational Raman
3
---- Elastic Line
2
T
1
0
264
266
268
270
272
274
276
278
280 282 284
Wavelength [nm]
WMO TECO 4-6 December 2006
286
288
290
292
294
296
298
300
A
 F2 
 ln   B
 F1 
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Lidar setup
Top view
Ø 0.3 m
Ø 0.2 m
Nd:YAG
40 mJ @ 266 nm
100 Hz
Ø 0.2 m
0.1 m
Ø 0.2 m
Ø 0.2 m
Ø 0.3 m
SUM
Ø
Normalized lidar returns
1.0
0.8
0.6
0.4
0.2
0.0
100
200
300
M
EF
Water vapor
Polychromator
Ø 0.1 m Sounding beam
0
BE
400
Range, meters
WMO TECO 4-6 December 2006
500
600
Acquisition
System
Temperature
Polychromator
F
EF
M1
M2
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Polychromators design
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
L2
PMT
(H2O)
P5
L3
P6
M2
L4
P4
PMT(N2)
P3
PMT(O2)
P2
P1
M1
from telescope
F
Stage I
L
L1
GR
F
Stage II
WMO TECO 4-6 December 2006
to PMTs
L
GR
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Lidar view
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Telescope
Temperature
polychromator
Water vapor
polychromator
Laser
WMO TECO 4-6 December 2006
Acquisition
system
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Test results
0
40
30
30
20
20
10
10
0
0
0
10
20
30
40
50
Range, meters
WMO TECO 4-6 December 2006
60
70
80
Water vapor concentration, g/kg
Temperature
Water vapor
40
Temperature, C
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Vertical time-series
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Open-path mid IR technique
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
•Most polyatomic molecules have specific mid IR spectroscopic features (GHG)
•High sensitivity
•Haze immunity
•Virtually immune to interference by other species
•Concentration measurements are averaged over an extended path, i.e.
much less affected by local unrepresentative fluctuations in gas concentration
than point sensors
data is better suited for numerical models
•Measurements can be made in regions of difficult access, especially above
ground level
•No material contact between gas and sensor i.e. no degradation of the gas being
measured or "poisoning" of the sensor
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Mid IR open-path principle
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
ln( )
N 
L
Intrapulse tuning:
WMO TECO 4-6 December 2006
Species and atmospheric parameters
measurable within a single
wavelength scan
O3
O3
H2O
H2O
Temperature
and
humidity
WMO TECO 4-6 December 2006
CO2
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
NH3, CH4 , N2O
and ethanol also
detected
in lab conditions
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Ozone detection
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Comparison between QCL and standard ozone
.
analyzers measurements at 220 m path-length
Ozone concentration(QCL) [ppb]
70
Concentration calculated from the
experimental differential transmittance
Theoretical line
60
50
40
30
20
10
0
WMO TECO 4-6 December 2006
0
10
20
30
40
50
60
70
Ozone concentration (Ozone analyzer) [ppb]
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Temperature measurements using
mid IR lines of H2O
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
ln  1
T
ln  2
1.7
1.6
Ratio
Ratio
1.5
1.4
1.3
1.2
1.1
285
WMO TECO 4-6 December 2006
290
Temperature [K]
295
Space-resolved open-path
measurements
Transmitter
receiver
Beam path
WMO TECO 4-6 December 2006
Retroreflectors
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
Conclusion

ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Automated water vapor lidar for meteorological
applications was developed. Experimental operation
ongoing, final installation in Payerne foreseen for mid
2008
 Water vapor and temperature Raman lidar with high
spatial and temporal resolution was built
 First non cryogenic mid IR system for open path
monitoring of trace gases water vapor and
temperature has been developed.
Planned tests for GHG detection, humidity and T°
intercomparison with conventional techniques
WMO TECO 4-6 December 2006
Logo optimisé par
J.-D.Bonjour, SI-DGR
13.4.93
ÉCOLE POLYTECHNIQUE
FÉDÉRALE DE LAUSANNE
Thank you
WMO TECO 4-6 December 2006