Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE New optical remote sensing instruments for water vapour monitoring developed at the Swiss Federal Institute of.
Download ReportTranscript Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE New optical remote sensing instruments for water vapour monitoring developed at the Swiss Federal Institute of.
Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE New optical remote sensing instruments for water vapour monitoring developed at the Swiss Federal Institute of Technology Lausanne - EPFL Valentin Simeonov*, Todor Dinoev, Pablo Ristori, Marian Taslakov, Mark Parlange, Ilya Serikov and Hubert van den Bergh Swiss Federal Institute of Technology –Lausanne Switzerland Bertrand Calpini MeteoSiss - Payerne Yuri Arshinov and Sergei Bobrovnikov IOA –Tomsk - Russia WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Outline ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE •Lidar principle •Automated water vapor Raman lidar for operational use at MeteoSwiss •High spatial and temporal resolution water vapor /temperature Raman lidar •Mid IR, long open-path system for trace gas, water vapor and temperature monitoring WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Lidar principle ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE FOV Raman method for water vapor measurements R R S(R) A P( R 2 ( R)T ( R) P R) P S ( R ) Pk 0 A WMO TECO 4-6 December 2006 w( R) n SN 2 ( R) SO 2 S H 2O ( R) ( ) S N 2 ( R) ( R) R exp N 2 ( r )dr R0 Water vapor Raman lidar for operational use in meteorology Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Lidar specifications Water vapor mixing ratio Aerosol Detection limit 0.01 g/kg Extinction & 355 nm Backscatter & 355 nm Statistical error < 10 % Height range / resolution Daytime 150-5’000 m / 30-400 m Night time 150 – 10’000 m / 30-600 m Acquisition time 15-30 min WMO TECO 4-6 December 2006 Requirements Fully automated, continuous operation Long term stability High reliability > 85% technical availability Eye safety Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 General lidar design ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Transmitter Nd:YAG laser 400 mJ & 355 nm 30 Hz rep. rate Beam expander 15 X To the polychromator WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Eye safety Nominal Hazard Distance 400 Vertical Heigth, m ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 300 200 EYE and SKIN safe zone 100 Danger zone 0 0 1 2 3 4 5 6 7 8 9 10 Time of Exposure, s Laser energy 400 mJ @ 355 nm, beam diameter 140 mm (after expansion) WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 General lidar design ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Receiver (NFOW/NB) Narrow Field of View Narrow band Matrix telescope of four Ø 30 cm mirrors 0.2 mrad FOV To the polychromator WMO TECO 4-6 December 2006 Spectral isolation and detection Diffraction grating polychromator • • • • • Long term stability Narrow band detection – 0.3 nm pass-band (possible adjustment) Oxygen channel – aerosol correction 1012 suppression of the laser line 40% efficiency WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Polychromator view Diffraction grating Parabolic mirror Photomultipliers Doublet lens Fiber holder & collimating lens WMO TECO 4-6 December 2006 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Lidar cabin 2.4 m WMO TECO 4-6 December 2006 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Outside view WMO TECO 4-6 December 2006 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Inside view ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Telescope Fibers Output of the Beam Expander Telescope Fibers Polychromator Mirrors Laser WMO TECO 4-6 December 2006 Data treatment module •Raw data correction •H2O retrieval with a predefined error (space resolution variable) •Data storage Input parameters • Averaging time • Accuracy • Vertical resolution limits • Calibration coefficient WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Data treatment module WMO TECO 4-6 December 2006 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Last data WMO TECO 4-6 December 2006 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Future steps ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Experimental operation in Lausanne till May 2007 Calibration - with tethered balloon (Snow White) - with GPS data - absolute calibration tests Reliability tests Verification with balloon measurements in Payerne Start of operation at MeteoSwiss -July 2008 WMO TECO 4-6 December 2006 High spatial and temporal resolution Raman lidar for water vapor and temperature measurements Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Goal: Study of turbulent boundary layer intercomparison with LES model Lidar specifications Fixed spatial resolution of 1.5 m Temporal resolution 1 s Operational range 10-500 m Water vapor and temperature statistical error < 10 % Scanning capability WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE 7 x 10 -30 Edge Filter Transmission 6 ---- Pure Rotational Raman N2 & O2 Intensity [a.u.] 5 4 ---- O2 Ro-vibrational Raman ---- N2 Ro-vibrational Raman ---- H2O Ro-vibrational Raman 3 ---- Elastic Line 2 T 1 0 264 266 268 270 272 274 276 278 280 282 284 Wavelength [nm] WMO TECO 4-6 December 2006 286 288 290 292 294 296 298 300 A F2 ln B F1 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Lidar setup Top view Ø 0.3 m Ø 0.2 m Nd:YAG 40 mJ @ 266 nm 100 Hz Ø 0.2 m 0.1 m Ø 0.2 m Ø 0.2 m Ø 0.3 m SUM Ø Normalized lidar returns 1.0 0.8 0.6 0.4 0.2 0.0 100 200 300 M EF Water vapor Polychromator Ø 0.1 m Sounding beam 0 BE 400 Range, meters WMO TECO 4-6 December 2006 500 600 Acquisition System Temperature Polychromator F EF M1 M2 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Polychromators design ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE L2 PMT (H2O) P5 L3 P6 M2 L4 P4 PMT(N2) P3 PMT(O2) P2 P1 M1 from telescope F Stage I L L1 GR F Stage II WMO TECO 4-6 December 2006 to PMTs L GR Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Lidar view ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Telescope Temperature polychromator Water vapor polychromator Laser WMO TECO 4-6 December 2006 Acquisition system Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Test results 0 40 30 30 20 20 10 10 0 0 0 10 20 30 40 50 Range, meters WMO TECO 4-6 December 2006 60 70 80 Water vapor concentration, g/kg Temperature Water vapor 40 Temperature, C ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Vertical time-series WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Open-path mid IR technique Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE •Most polyatomic molecules have specific mid IR spectroscopic features (GHG) •High sensitivity •Haze immunity •Virtually immune to interference by other species •Concentration measurements are averaged over an extended path, i.e. much less affected by local unrepresentative fluctuations in gas concentration than point sensors data is better suited for numerical models •Measurements can be made in regions of difficult access, especially above ground level •No material contact between gas and sensor i.e. no degradation of the gas being measured or "poisoning" of the sensor WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Mid IR open-path principle ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ln( ) N L Intrapulse tuning: WMO TECO 4-6 December 2006 Species and atmospheric parameters measurable within a single wavelength scan O3 O3 H2O H2O Temperature and humidity WMO TECO 4-6 December 2006 CO2 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE NH3, CH4 , N2O and ethanol also detected in lab conditions Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Ozone detection ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Comparison between QCL and standard ozone . analyzers measurements at 220 m path-length Ozone concentration(QCL) [ppb] 70 Concentration calculated from the experimental differential transmittance Theoretical line 60 50 40 30 20 10 0 WMO TECO 4-6 December 2006 0 10 20 30 40 50 60 70 Ozone concentration (Ozone analyzer) [ppb] Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Temperature measurements using mid IR lines of H2O ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE ln 1 T ln 2 1.7 1.6 Ratio Ratio 1.5 1.4 1.3 1.2 1.1 285 WMO TECO 4-6 December 2006 290 Temperature [K] 295 Space-resolved open-path measurements Transmitter receiver Beam path WMO TECO 4-6 December 2006 Retroreflectors Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 Conclusion ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Automated water vapor lidar for meteorological applications was developed. Experimental operation ongoing, final installation in Payerne foreseen for mid 2008 Water vapor and temperature Raman lidar with high spatial and temporal resolution was built First non cryogenic mid IR system for open path monitoring of trace gases water vapor and temperature has been developed. Planned tests for GHG detection, humidity and T° intercomparison with conventional techniques WMO TECO 4-6 December 2006 Logo optimisé par J.-D.Bonjour, SI-DGR 13.4.93 ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Thank you WMO TECO 4-6 December 2006