CPODD 2012, BNL Some Field Theoretical Issues of the Chiral Magnetic Effect Hai-cang Ren The Rockefeller University & CCNU with De-fu Hou, Hui Liu JHEP 05(2011)046
Download ReportTranscript CPODD 2012, BNL Some Field Theoretical Issues of the Chiral Magnetic Effect Hai-cang Ren The Rockefeller University & CCNU with De-fu Hou, Hui Liu JHEP 05(2011)046
CPODD 2012, BNL Some Field Theoretical Issues of the Chiral Magnetic Effect Hai-cang Ren The Rockefeller University & CCNU with De-fu Hou, Hui Liu JHEP 05(2011)046 1 The contents • • • • • • An introduction of CME Axial anomaly in QCD General properties of CME One loop calculation Summary Current project 2 I. An introduction to CME (Fukushima, Kharzeev and Warringa) 1. A charged massless quark in a magnetic field B Helicity 5 L charge + — + — Magnetic moment Momentum Current J B R JR JL In a quark matter of net axial charge Q5 e2 J JR JL 5B 2 2 NC q2f Color-flavor factor f 3 2. RHIC Implementation 5 0 i) Excess axial change Transition between different topologies of QCD T=0 Axial anomaly N5 N f g2 32 2 T≠0 4 l l d x F F nW nW the wind number Fl QCD field strength B ii) Magnetic field Generated by an off-central collision ion ion 4 iii) May provide a new signal of QCD phase transition. iv) Theoretical approach: ---- Field theory (Fukushima et. al., Kharzeev et. al.) ---- Holographic theory (Yee, Rebhan et. al.) v) There are experimental evidences, remains to be solidified. vi) Complication in RHIC: *Inhomogeneous & time dependent magnetic field *Inhomogeneous temperature and chemical potentials local equilibrium *Beyond thermal equilibrium 5 3. The robustness of 2 J CME e 5B 2 2 under the Infrared limit of 5 k , k 0 1 1 J q k, k 0 2 2 i.e. (k, k0 ) 0 k0 1 B q k, 2 2 and (q, ) 0 6 A relativistic quantum field theory at nonzero temperature and/or chemical potentials • UV divergence is no worse than vacuum • IR is more problematic because: p0 ---- The appearance of the ratio |p| limits p0 0 and p 0 may dependon orders |p| ---- The appearance of the ratios etc. T T 0 and p 0 may dependon orders ---- Linde’s problem with gluons. 7 II. Axial anomaly in QCD • Naïve Ward identities: J 0 J 5 0 and J i qˆ EM current J 5 i 5 axial current qˆ charge matrixin flavorspace • UV divergence demands regularization (e.g. Pauli Villars) ------ Not all Ward identities can be preserved ------ The ones related to gauge symmetries have to be maintained PV regulators: PV with mass M PV and negativemetricin Hilbert space J PV 0 but J 5PV 2iM PV PV 5 PV Fermionloop of Fermionloop of C PV fermionloop of PV CPV 1 PV PV 8 • Ward identities post regularization: M PV J 0 N f g2 2 e l l J 5 i F F F F i 2 2 32 16 anomalousWard identity Fl YM field strength F EM field strenth N c q 2f color - flavorfactor f 9 • Applications of the axial anomaly: 0 ※ The explanation of the rate of 2 ※ The solution of UA(1) problem ※ Link the change of the axial charge and the change of topology. ※ Chiral magnetic effect, chiral vortical effect, etc. 10 III General properties of CME i) Naïve axial charge & conserved axial charge 5 5 † N 5 d 3 r 5 dN5 e2 e2 3 5 3 3 3 d r d r J 5 d rE B d rE B 2 2 dt t 4 4 not conservedbecause of theanomaly e2 ~ 3 N5 N5 d rA B 2 4 ~ dN 5 ~ 0 N 5 is conserved! dt ~ N 5 should be used in thermodynamics equilibrium (Rubakov) 11 ii) Grand partition function: ~ H N 5 N 5 Z T rexp T N quark number, , 5 chemicalpotentials iii) Linear response Ji (Q) Kij (Q) Aj (Q) Q (q, ) e2 Kij (Q) ij (Q) i 2 5 ijk qk O( A2 ) 4 ij (Q) The usual photon self-energy tensor, subject to higher order corrections 12 iv) The Taylor expansion in 5 Kij (Q) Kij(0) (Q) 5 Kij(1) (Q) O(52 ) Chiral magnetic current J CME 2 e Kij(1) (Q) ij (Q) i 2 ijk qk 0 5 5 2 K Q1 i 5 Q2 Normal term K Anomaly term i 5 1 1 Q1 q k , k 0 2 2 1 1 Q2 q k , k 0 2 2 K (k, ik 0 ) lim e2 i q 2 ijk k 2 K Q1 K 0 Q2 Q1 i 5 Q2 (Q1 , Q2 ) 13 The limit K (0, k 0 ) 0 1 Q1 q, k 0 2 1 Q2 q, k 0 2 K Q1 i 5 Q2 K i 5 Q2 Q1 1 e2 lim lim ij (Q1 , Q2 ) i lim K ij (Q1 , Q2 ) i 2 ijk qk k0 0 k 0 k0 0 k 2 0 anomalousWard identity K Q1 J CME 0 to all orders and all T and i 5 Q2 14 The limit K (k,0) 0 K 1 Q1 q1 , q k , 2 1 Q2 q 2 , q k , 2 Q1 i 5 Q2 General tensor structure with Bose symmetry: 15 The electromagnetic gauge invariance: 2 e Q1 Q2 (q, ) K (Q) i 2 5 F (Q) 1 ijk qk 2 F (Q) C 0 (q 2 , q 2 ,q 2 ; ) C 0 (q 2 , q 2 ,q 2 ; ) (1) ij ; ) q 2 C1 (q 2 , q 2 ,q 2 ; ) C1 (q 2 , q 2 ,q 2 ; ) C 2 ( q 2 , q 2 , q 2 ; ) C 2 ( q 2 , q 2 , q 2 F (Q) 0 If the infrared limit exists: lim Q 0 e2 K (Q) i 2 5 ijk qk 2 (1) ij J CME e2 5B 2 2 to all orders 16 III. One loop calculation 3 d p K ij(1) (Q) T ( P , Q | 0 ) C ( P , Q | M ) PV ij PV 3 ij ( 2 ) p0 PV ij ( P, Q | m) trS ( P Q | m) i S ( P | m) j S ( P | m) C PV i i P 4 5 4 5 m P (p, p0 ), Q (q, ) 1 PV Continuation of imaginary Matsubara q0 to i0 with real for retarded (advanced) response function after the summation over Matsubara p0 17 Subtlety of IR limit: e2 K (Q) i 2 5 F (Q) 1 ijk qk 2 (1) ij lim lim F (Q) 0 T 0 and / or 0 q 0 0 2 lim lim F (Q ) 0 q 0 3 J CME e2 5B 2 2 J CME e2 2 5B 6 Kharzeev & Warringar IR singularity: C 2 (0,0,0; ) T 0 and 0 1 3 lim lim F (Q) lim lim F (Q) 1 q 0 0 0 q 0 J CME 0 IR singularity: C1 (q 2 , q 2 ;q 2 ; ) 1 2 q2 2 and C 2 (q 2 , q 2 ;q 2 ; ) 2 q2 2 18 III. Summary 1 1 J CME q k , k 0 2 2 1 1 vs. 5 k , k 0 & B q k , k 0 2 2 J CME IR limit T 0 0 Higher order lim lim k0 0 k 0 0 none lim lim k 0 k0 0 J CME T 0 0 T 0 and / or 0 lim lim k0 0 k 0 lim lim k 0 k0 0 lim lim k 0 k0 0 lim lim limlim q 00 0 limlim q0 2 5 B 2e 2 1 2 5 B 3 2e 2 k0 0 k 0 lim lim T 0 and/or q0 0 lim lim k 0 k0 0 lim lim 0 q0 0 lim lim e2 2 5B 2 1 e2 5B 2 3 2 0 none if IR safe yes none k0 0 k 0 19 Current project Anomalous transport coefficients T heLagrangiandensity iA 5 5 5 ... AnomalousWardidentity: 1 i J 5 F F 2 3 48 Anomaly& thermodyn amic laws dictates Son & Surowka J 5 B B B axial magneticfield fluid vorticity One loop without regulators Landsteiner et. al. B 1 2 2 5 2 T 2 52 2 2 1 20 One loop with P V regulators: Using theconservedaxial chargedictatedby anomaly: 1 1 rm) 5 5 2 A B(anomaly te 3 4 B , P V regulatedone loop anomaly term Regulated one loop B 1 3 1 2 2 2 5 1 6 52 T 2 Anomaly term 1 6 2 0 5 Total 1 2 1 2 2 2 5 1 6 52 T 2 21 Anomaly and thermodynamics AnomalousWardidentityand energy - momentumconservation J 5 E B T F J 5 and anomalycoefficient u T 5 J 5 F J 5 E B But we found for P V regulators J 5PV TPV u TPV 2M PV PV 5 PV but F J 5 PV 2 A PV 5 PV 5 J 5PV F J 5 PV Does the anomaly still show up in the regulated u T 5 J 5 ? 22 Thank you! 23