Transcript 定積分面積與黎曼和
第二單元 面積與黎曼和 Area b b r h a a ×b a 1 a ×h 2 h a pr 2 1 (a + b) ×h 2 Archimedes’ Method 287 B.C. ~ 212 B.C. P1 P2 Area of a circle = lim( Pn ) n® ¥ P3 Area More Rectangle is better n A» å i= 1 f ( xi )D x The Area under the Curve Definition f defined on[a,b],if f is continuous on[a,b]and f ( x) ³ 0 on[a,b], then n A = lim An = lim å f ( xi )D x n® ¥ n® ¥ i= 1 Riemann Sum A German mathematician who made important generalization to the definition of the integral(1826-1866) The Definite integral ò b a n f ( x)dx = lim å f ( xi )D x n® ¥ i= 1 f defined on [a,b]for which the limit exists and is same for any choice of partitions .When the limit exists , we say that f is integrable on [a,b]. Some Special Sum Formula n (1) å i = 1+ 2 + 3 + 4 + L L L + n i= 1 n (2) å i= 1 n( n + 1) = 2 i 2 = 12 + 22 + 32 + 42 + L L L + n2 n(n + 1)(2n + 1) = 6 n 3 (3) å i = 13 + 23 + 33 + 43 + L L L + n3 i= 1 2 én(n + 1) ù ú =ê êë 2 ú û Example Write the indicated sum in sigma notation 56 (1) 1+ 2 + 3 + L L + 56 = å k=1 (2) 1+ 1/ 2 + 1/ 3 + L L + 1/100 = k 100 1 k å k=1 100 (3) 1- 1/ 2 + 1/ 3 + L L - 1/100 = å k+1 (- 1) k=1 (4) f (a1 )D x + f (a2 )D x + L L + f (an )D x = n å i= 1 f (ai ) D x 1 k Example5 Find å (3k + 2) k= 1 Solution : 5 å k= 1 =3 5 (3k + 2) = 5 å k= 1 å k= 1 5 3k + å 2 k= 1 k + (2 + 2 + 2 + 2 + 2) 5 ×6 + 10 = 45 + 10 = 55 = 3× 2 Example 12 + 22 + 32 + 42 + L L L + 102 = ? 5 10 ×11 ×21 7 6 2 = 5 ×11×7 = 385 n (2) å i 2 = 12 + 22 + 32 + 42 + L L L + n2 i= 1 n(n + 1)(2n + 1) = 6 Example Compute ò 1 2 x dx 0 1 Dx = n Height : 1 2 x1 = , x2 = , L n n i n , xi = , xn = n n 1 2 2 2 f ( x1 ) = ( ) , f ( x2 ) = ( ) , L L n n i 2 Height : f ( xi ) = ( ) n Example the area of the ith rectangle is 1 i 2 i2 ( ) ×( ) = 3 n n n n Example An = å i= 1 2 æi ÷ ö f ( xi )D x = å çç ÷ D x ÷ ç è ø n i= 1 n 2 n æi ö æ ö 1 1 2 ÷ ç = i = å çç ÷ ÷ ÷ ç ÷ ÷ n3 åi= 1 ç ç è ø è ø n n i= 1 n 1 n(n + 1)(2n + 1) = 3× n 6 n(n + 1)(2n + 1) 1 A = lim = 3 n® ¥ 6n 3 \ ò 1 0 1 x dx = 3 2 單元結語 本單元說明了定積分的意義為面積。 面積的求法要能夠以黎曼和求之,黎曼和就是分割後再相 加的觀念。 以後是不是要求面積時都需要以黎曼合來計算呢?不!這 樣算實在太麻煩了,第四單元,有一個定理叫做”微積分 基本定理”,它可簡化我們的計算。 看完本單元後單元後,建議同學多複習上學期所學的各類 型導函數的求法。