High order radiative corrections in Electron-Proton scattering Egle Tomasi-Gustafsson Saclay, France JLab, August 5, 2008 In collaboration with Yu.
Download ReportTranscript High order radiative corrections in Electron-Proton scattering Egle Tomasi-Gustafsson Saclay, France JLab, August 5, 2008 In collaboration with Yu.
High order radiative corrections in Electron-Proton scattering Egle Tomasi-Gustafsson Saclay, France JLab, August 5, 2008 In collaboration with Yu. Bystriskiy, V. Bytev and Prof. E.A. Kuraev August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 1 Cross section of (quasi)elastic ep-scattering Classify radiative corrections: Elastic e ( p ) p( p ) e ( p ' ) p( p' ) Inelastic 1 1 e ( p ' ) p( p' ) ( k ) 1 Higher order inelastic double brehmstrahlung, e ( p ' ) p( p' ) ( k ) ( k ) pair production.. e ( p ' ) p( p' ) e ( q ) e ( q ) 1 1 2 1 ............................ August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 2 Unpolarized case August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 3 Feynman diagrams, for the scattering amplitude Elastic scattering August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 4 Single bremstrahlung August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 5 Double Bremstrahlung and Pair Production Lowest order radiative corrections (RC): Mo and Tsai (1969) Infrared divergences : « photon mass » , Logarithmic enhancement: August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 6 Vacuum Polarization Main contribution: vacuum polarization due to electron positron pair August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 7 Vertex function The contribution to F2(Q2) is suppressed by compared to F1(Q2) The « photon mass » , , is an auxiliary parameter, which does not enter in the final answer for the cross section August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 8 Collinear Emission of Photons • Contains logarithmic enhancement • Suffers from infrared divergences August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 9 August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 10 Scattered electron energy final state emission Initial state emission Quasi-elastic scattering 3% Not so small! Shift to LOWER Q2 Y0 All orders of PT needed beyond Mo & Tsai approximation! August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 11 Short history (I) Schwinger: corrections to cross section for electron scattering in external field s=s0(1+d) (1) Yennie, Frauchi, Suura: cross section of any pure process (without real photon emission) is zero. Kessler, Ericsson, Baier, Fadin, Khoze, Y. Tsai : quasi real electron method. Emission of hard photon is described in terms of a convolution of a radiative function with Born cross section. (1) Not adequate August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 12 Short history (II) 1977: Altarelli Parisi Gribov Lipatov, Dokshitzer: (DGLAP) Asymptotic freedom, evolution equation, Collins factorization theorem. Drell-Yan picture of hard processed in QED : application of QCD ideas to QED: radiative corrections in form of structure functions and Drell-Yan picture Leading terms: and non leading terms explicitely taken into account in DGLAP evolution equations. In QED known as Lipatov equations (1975). August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 13 Structure Function method E. A. Kuraev and V.S. Fadin, Sov. J. of Nucl. Phys. 41, 466 (1985) • SF method applied to QED processes: calculation of radiative corrections with precision ~ 0.1%. • Takes into account the dynamics of the process Lipatov equations (1975) • Formulated in terms of parton densities (leptons, antileptons, photons) • Many applications to different processes August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 14 Structure Function Method (Applications) – e+e- hadrons( J/ width) E. A. KURAEV and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985) – ep e’X (elastic and inelastic scattering) E. A. KURAEV ;N.P. MERENKOV and V.S. FADIN, Sov. J. of Nucl. Phys. 47,1009 (1988) – Decay width of mesons (FSI) E. A. KURAEV, JETP Lett.65, 127 (1997) – Radiative corrections for LEP beam (small angle BHABHA scattering) A.B.Arbuzov, E.A.Kuraev et al, Phys. Lett.B 399, 312 (1997) – Compton and double Compton scattering A.N.Ilyichev, E.A. Kuraev, V.Bytev and Y. P. Peresun'ko, J. Exp. Theor. Phys.100 31 (2005) – Structure function method applied to polarized and unpolarized electron-proton scattering: A solution of the GE(p)/GM(p) discrepancy. Y. Bystricky, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C75, 015207 (2007). – Radiative corrections to DVCS electron tensor. V.Bytev, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C (2008) August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 15 The Structure Function Method E. A. K. and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985) Distinguish: -leading contributions of higher order -non leading ones The SF method is based on: • Renormalization group evolution equation • Drell-Yan parton picture of the cross section in QCD Electron SF: probability to ‘find’ electron in the initial electron, with energy fraction x and virtuality up to Q2 August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 16 LSF: ‰ precision E. A. K. and V.S. FADIN, Sov. J. of Nucl. Phys. 41, 466 (1985) LLA (Leading Logarithm Approximation) Q2 L 1, L ln 2 me Precision of LLA Including K-factor 1 L 0.2% 400 2 L 0.01 % Even when corrections in first order PT are d~100%, the accuracy of higher order RC (LSF) is / d1% ! August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 17 The LSF cross section (for ep ) • If the electron is detected in a calorimeter: the cross section is integrated over the scattered electron energy fraction: 1 dzD( z , ) 1 0 • The K-factor includes all non leading contributions: August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 18 Results Q2=1 GeV2 Q2=3 GeV2 SF Born RC Born ……… Polarization Q2=5 GeV2 Both calculations assume dipole FFs The slope changes (due to different RC) E.T-G, Phys. Part. Nucl. Lett. 4, 281-288 (2007). August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 19 Unpolarized Cross section Q2=1 GeV2 Q2=3 GeV2 Born +dipole FFs (=unpolarized experiment+Mo&Tsai) SF (with dipole FFs) SF+2 exchange Q2=5 GeV2 SF: change the slope! 2 exchange very small! August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 20 Polarization ratio q =80° Yu. Bystricky, E.A.Kuraev, E. T.-G, Phys. Rev. C 75, 015207 (2007) Born SF SF+2 exchange q =60° q =20° 2 exchange very small! 2 destroys linearity! August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 21 Radiative Corrections (SF method) Yu. Bystricky, E.A.Kuraev, E. Tomasi-Gustafsson, Phys. Rev. C75, 015207 (2007) SLAC data SF corrected JLab data SF corrected Polarization data Rosenbluth parameters highly correlated! E.T-G, Phys. Part. Nucl. Lett. 4, 281 (2007) August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 22 Bethe-Heitler DVCS Interference August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 23 Charge Asymmetry RC (LSF) RC(1st order) August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 24 HELICITY Asymmetry August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 25 Conclusions •High precision experiments need highly precise Radiative Corrections •Higher order corrections become more and more important at large Q2 •The lepton structure function method can be applied to different electromagnetic processes with permille precision •Higher order corrections depend on the relevant kinematical variables August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 26 Radiative Corrections (first order) The cross section: The correction ( in powers of Z): Z0: electron emission and vacuum polarization Z1: interference 1-2 exchange Z2: target emission L.C. Maximon and J.A Tjon, PRC 62, 054320(2000) August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 27 LSF Corrections (High orders included) The cross section: The correction ( Leading Logarithm Approximation): The vacuum polarization: The K-factor: August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 28 Radiative Corrections ds ( Q , ) ds RC 2 Born ( Q , )( 1 ) 2 Q2=1 GeV2 Yu. Bystricky, E.A.Kuraev, E. T-G, Phys. Rev. C75, 015207 (2007) L.C. Maximon and J.A Tjon, PRC 62, 054320(2000) August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 29 Radiative Corrections MT (Z2) proton LSF proton LSF electron (not LLA) MT (Z) two photon LSF LLA LSF total MT (Z0) electron MT total August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 30 MT proton LSF proton LSF electron (not LLA) MT (Z0) two photon LSF LLA LSF total MT (Z0) electron MT (Z0) total August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 31 August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 32 LSF correction (SLAC data) point by point Q2=5 GeV2 August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 33 The Pauli and Dirac Form Factors The electromagnetic current in terms of the Pauli and Dirac FFs: Related to the Sachs FFs : Normalization F1p(0)=1, F2p(0)= κp GEp(0)=1, GMp(0)=μp=2.79 August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 34 Analytical properties of Compton amplitude • Elastic form factors and inelastic channels are not independent SUM RULES August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 35 Analytical properties of Compton amplitude Neglect left contribution and close contour on the right side (10% accuracy): Cancellation of strong interaction effects in FFs and inelastic channels! Cancellation proved exactly in QED: the L2 * contribution to FFs is cancelled by soft photon emission August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 36 resonance (example of inelastic channels) • Small contribution ~0.5% • Opposite sign with respect to proton intermediate state Cancellation of contributions in elastic and inelastic channels August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 37 Interference of 1 2 exchange – Enhancement due to the fast decreasing of form factors (transferred momentum equally shared between the two photons). – Dipole approximation of FFs: Q02=0.71GeV2 August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 38 Interference of 1 2 exchange • Explicit calculation for structureless proton – The contribution is small, for unpolarized and polarized ep scattering – Does not contain the enhancement factor L – The relevant contribution to K is ~ 1 E.A.Kuraev, V. Bytev, Yu. Bystricky, E.T-G, Phys. Rev. D74, 013003 (1076) August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 39 Two Photon Exchange No exact calculation for ep scattering ( inelastic intermediate states..) but electron-muon scattering constitutes an upper limit! August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 40 QED versus QCD Imaginary part of the 2 amplitude August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 41 QED versus QCD Q2=0.05 GeV2 Q2=1.2 GeV2 Q2=2 GeV2 August 5, 2008 CEA DSM Dapnia Egle TOMASI-GUSTAFSSON 42