Formulas Music Gestures Mathematics Alexander Grothendieck: „This is probably the mathematics of the new age“ Guerino Mazzola U Minnesota & Zürich [email protected] [email protected] www.encyclospace.org.
Download ReportTranscript Formulas Music Gestures Mathematics Alexander Grothendieck: „This is probably the mathematics of the new age“ Guerino Mazzola U Minnesota & Zürich [email protected] [email protected] www.encyclospace.org.
Formulas Music Gestures Mathematics Alexander Grothendieck: „This is probably the mathematics of the new age“ Guerino Mazzola U Minnesota & Zürich [email protected] [email protected] www.encyclospace.org Yoneda‘s Lemma in Music: Reinventing Points Nobuo Yoneda (1930-1996) B f·g change of address g f A space F A@F Hom(A,F) Sets cartesian products X x Y disjoint sums X Y powersets XY characteristic maps c:X —> 2 no „algebra“ @= RMod = {F: R opp@Ens RMod Modopp —> Sets} presheaves have all these properties RMod abelian category, direct sums etc. has „algebra“ no powersets no characteristic maps C Ÿ12(pitch classes mod. octave) C Ÿ12 (@Ÿ12 = (Hom(-, Ÿ12)) A RMod F RMod@ A@F A@M C ŸM 12 C 2A@F = A@2F C^ A@WF Gottlob Frege ~> Trans(C,C) Ÿ12@Ÿ12 2 = {sub-presheaves of @A} A@W W = {sieves in A} = {sub-presheaves of @A F} = {F-sieves in A} B@C^ = {(f:BA, c.f)| c C} B@A B@F F C f@C^ = C.f @A 1A f:B A applications of general case to harmonic topologies, ToM ch 24 Category RLoc of local compositions (over R): • objects = F-sieves in A, i.e. K @A F • morphisms: K @A F, L @B G f: K L : A B (change of address) such that there is h: F G with: K @A F f @ h f/: K L L @B G Full subcategories RObLoc RLoc of objective local compositions K = C^ and RLocMod RObLoc of modular local compositions, C A@M, M = R-module Thomas Noll 1995: models Hugo Riemann‘s harmony self-addressed tones x: O Ÿ12 O={ } O x Euclid‘s punctual address x: Ÿ12 Ÿ12 z: Ÿ12 Ÿ12 z Ÿ12@Ÿ12 dominant triad {g, b, d} tonic triad {c, e, g} „relative consonances“ Dt Tc f Trans(Dt,Tc) = < f Ÿ12@Ÿ12 | f: Dt Tc > Fuxian counterpoint: ƒe:Ÿ12 @Ÿ12 Ÿ12 [e] @ Ÿ12 [e] Trans(Dt,Tc) = Trans(Ke, Ke)|ƒe Pierre Boulez structures Ia (1952) analyzed by G. Ligeti thread (« Faden ») The composition is a system of threads! dodecaphonic series Messiaen: modes et valeurs d‘intensité Ÿ12 S strong dichotomy of class 71 symmetry T7.11 0 A = Ÿ11, F = Ÿ12 (pitch classes) S: Ÿ11 Ÿ12, S = (S0, S1, ... S11) ei ~> Si, e1 = (1, 0, ... 0), etc. e0 = 0 11 The yoga of Boulez‘s construction is a canonical system of address changes on address Ÿ11 Ÿ11 (affine tensor product) generating new series of series used in the composition. 3, 4, 2, 5, 9, 10, 8, 11, 7, 0, 6, 1, 4, 3, A:ist. 11 B:ist. 11 A:ist. 10 B:ist. 10 A:ist. 9 B:ist. 9 A:ist. 8 B:ist. 8 A:ist. 7 B:ist. 7 A:ist. 6 B:ist. 6 A:ist. 5 B:ist. 5 A:ist. 4 B:ist. 4 A:ist. 3 B:ist. 3 A:ist. 2 B:ist. 2 A:ist. 1 B:ist. 1 A:ist. 0 B:ist. 0 1, 6, 0, 10, 5, 7, 9, 2, 11 8 T7.11 Gérard Milmeister part A part B fourth movement: Coherence/Opposition I II III IV global theory V VI VII K = {0, 2, 4, 5, 7, 9, 11} Ÿ12 J = {I, II,..., VII} triadic degrees in K covering KJ nerve n(KJ) = harmonic strip II VI V IV I VII III The category RGlobMod of global modular compositions: • objects: - an address A, - a covering I of a finite set G by subsets Gi, - atlas (Ki)I, Ki A@Mi , Mi = R-modules - bijections gi: Gi Ki - gluing conditions: (gj gi-1)/IdA: Kij Kji = A-addressed global modular composition GI • morphisms:... Theorem (global addressed geometric classification) Let A be a locally free module of finite rank over a commutative R. Consider the A-addressed global modular compositions GI with the following properties (*): • the modules R.Gi generated by the charts Gi are locally free of finite rank • the modules of affine functions G(Gi) are projective Then there exists a subscheme Jn* of a projective R-scheme of finite type whose points w: Spec(S) Jn* parametrize the isomorphism classes of SRA -addressed global modular compositions with properties (*). ToM, ch 15, 16 balance Cat f: X Y Frege objective Yoneda @f: @X @Y 3 resolution A 6 1 4 5 i G(Gi)res G(i) Edgar Varèse res 2 GI 4 6 3 A@R G(Gi) Gi 1 2 5 3 6 1 4 5 i N = G(Gi)res G(i) 2 N = G(Gi Gj)res G(i j) pr(/) (N) = N A@R N A@limnerf(A)(F) Category ∫C of C-addressed points • objects of ∫C x: @A F, F = presheaf in C@ ~ x F(A), write x: A F F • morphisms of ∫C x: A F, y: B G h/: x y address change F A x h G x A A = address, F = space of x B y local network in C = diagram x of C-addressed points xi: Ai Fi x: ∫C hilq/ilq hlip/lip hllr/llr xl: Al Fl hijt/ijt xj: Aj Fj PNM Applications: neural networs, automata, OO classes 2004 hjlk/jlk hjms/jms xm: Am Fm coordinate of x 3 Ÿ12 A=0 T5.-1 Ÿ12 2 7 T4 D Ÿ12 T11.-1 Ÿ12 T2 4 Ÿ12 Ÿ12 (3, 7, 2, 4) 0@lim(D) T5.-1 Ÿ12 Klumpenhouwer networks T4 T11.-1 T2 Ÿ12 network of dodecaphonic series Ÿ12 Ÿ12 Id/T11.-1 s Ÿ11 Ÿ11 T11.-1/Id T11.-1/Id Ÿ11 s Us Ÿ12 Ks Ÿ11 Id/T11.-1 UKs Ÿ12 Musical Transformational Theory David Lewin Generalized Musical Intervals and Transformations Cambridge UP 1987/2007: If I am at s and wish to get to t, what characteristic gesture should I perform in order to arrive there? (Opposition to what he calls cartesian approach, of res extensae.) This attitude is by and large the attitude of someone inside the music, as idealized dancer and/or singer. No external observer (analyst, listener) is needed. Gestures in Performance Theory Theodor W. Adorno Towards a Theory of Musical Reproduction (1946) Polity, 2006: Correspondingly the task of the interpreter would be to consider the notes until they are transformed into original manuscripts under the insistent eye of the observer; however not as images of the author‘s emotion—they are also such, but only accidentally— but as the seismographic curves, which the body has left to the music in its gestural vibrations. Robert S. Hatten Interpreting Musical Gestures, Topics, and Tropes 2004, Indiana UP 2004, p.113 Given the importance of gesture to interpretation, why do we not have a comprehensive theory of gesture in music? Free Jazz Cecil Taylor The body is in no way supposed to get involved in Western music. I try to imitate on the piano the leaps in space a dancer makes. Gilles Châtelet (1944-1999) Le geste est élastique, il peut se ramasser sur lui-même, sauter au-delà de lui-même et retentir, alors que la fonction ne donne que la forme du transit d'un terme extérieur à un autre terme extérieur, alors que l'acte s'épuise dans son résultat. (...) Figuring Space, 2000 Henri Poincaré (1854-1912) Localiser un objet en un point quelconque signifie se représenter le mouvement (c'est-à-dire les sensations musculaires qui les accompagnent et qui n'ont aucun caractère géométrique) qu'il faut faire pour l'atteindre. La valeur de la science, 1905 in algebra, we compactify gestures to formulas rotation matrix formula a11x+a12y+a13z = a a21x+a22y+a23z = b a31x+a32y+a33z = c a11 a12 a13 a21 a22 a23 a31 a32 a33 x a y = b z c the Fregean drama: morphisms/fonctions are the „phantoms“ (prisons?) of gestures. Y f(x) f(x) f(x) (x) (x x x X teleportation „Two attempts of reanimation“ 1. Gabriel: formulas via digraphs = „quiver algebras“ S T K => RK, quiver algebra P Q T X => R[X], polynomial algebra mathematics of Lewin‘s musical transformation theory 2. Multiplication of complex numbers: from phantom to gesture: infinite factorization Robert Peck: imaginary rotation ¬ x.eit -x 0 — x balance Cat f: X Y Frege objectve Yoneda @f: @X @Y Châtelet morphic Yoneda? @f: @X @Y Journal of Mathematics and Music 2007, 2009 Taylor & Francis MCM Proceedings 2011 Springer -addressed point g: X in spatial digraph X of topological space X (= digraph of continuous curves I X I = [0,1]) Gesture = body skeleton pitch g X time position pitch tip space realistic forms? p time position = topological space of gestures Digraph(, X) with skeleton and body in X notation: @X „loop of loops“ knot circle ET dance gesture time space space Proposition (Escher Theorem) For a topological space X, a sequence of digraphs 1 , 2, ... n and a permutation of 1, 2,... n, there is a homeomorphism 1@ ... n@X (1)@ ... (n)@X counterpoint Escher Theorem for Musical Creativity Gestoids: from gestures to formulas The homotopy classes of curves of a gesture g define the R-linear category Gestoid RGg of gesture g, R = commutative ring. It is generated by R-linear combinations n ancn of homotopy classes cn of the gesture‘s curves joining given points x, y. x y 1(X) Ÿn, n ≥ 0? Yes: All groups are fundamental groups! i— i ei2t g: ¬ Gg ¬ 1(S1) 1 X = S1 fundamental group 1(S1) Ÿ ei2nt ~ n n an ei2nt ~ Fourier formula f(t) = n an ei2nt — Diyah Larasati Dancing the Violent Body of Sound Bill Messing Schuyler Tsuda How can we „gestify“ formulas? Category [f] of factorizations of morphism f in C: objects morphisms X u u f W v a g Z W v Y If X b Y C is topological, then [f] is canonically a topological category Curve spaces? These are the „infinite factorizations“: Order category = {0 ≤ x ≤ y ≤ 1} of unit interval I X u1 u0 c = continuous functor for chosen topology on [f] W1 W0 curve space = @[f] v0 f Y v1 Gestures ? • spatial digraph f = @[f] A G-gesture in f is a G-addressed point g: G f [f] : c ~> c(0), c(1) X g G f Y Gest[f] = Digraph / f ∏ X Y = X@Y Gest[f] Y Z X Y X Z Categorical gestures and homological constructions • More generally: For any topological category X we have a curve space = @X, whose elements, the categorical curves, are continuous functors → X instead of continuous curves. • @X is canonically a topological category, morphisms = continuous natural transformations between categorical curves. • Categorical gestures are gestures g with values in the spatial digraph X = @X X: c ~> c(0), c(1) g: → X The set of these categorical gestures is a topological category, denoted by @X. Proposition (Categorical Escher Theorem) For a topological category X, a sequence of digraphs 1 , 2, ... n and a permutation of 1, 2,... n, there is a categorical homeomorphism 1@ ... n@X (1)@ ... (n)@X Two homological constructions for categorical gestures: 1. Extension modules. In loc. cit. we have shown that gestures in factorization categories [f] in RMod can be used to define the classical extension modules Extn(W, Z) for R-modules W, Z. loc. cit. 2. Singular homology for gestures I 0 I 𝜎 I 1 𝜎1 2 0 𝛾1 𝛾2 𝜎 2 𝛾4 𝛾3 Observe that a singular n-chain c: In → X with values in a topological space X is also a 1-chain c: I → In-1@X, etc. The n-chain R-module Cn(R, X) is generated by iterated 1chains: In@X I@[email protected]@X. Replacing I by the topological category and X by a topological category, a n-chain can be interpreted as a hypergesture in ↑@↑@... ↑@X, the n-fold hypergesture category over the line digraph ↑= • → • Using the Escher Theorem, we have boundary homomorphisms ∂n: Cn(X.*) → Cn-1(X.*) for any sequence * of digraphs, generalizing ↑↑... ↑, and ∂2 = 0, whence homology modules Hn = Ker(∂n)/Im(∂n+1).