3.2 – Truth Tables and Equivalent Statements Truth Values The truth values of component statements are used to find the truth values of.
Download ReportTranscript 3.2 – Truth Tables and Equivalent Statements Truth Values The truth values of component statements are used to find the truth values of.
3.2 – Truth Tables and Equivalent Statements Truth Values The truth values of component statements are used to find the truth values of compound statements. Conjunctions The truth values of the conjunction p and q (p ˄ q), are given in the truth table on the next slide. The connective “and” implies “both.” Truth Table A truth table shows all four possible combinations of truth values for component statements. 3.2 – Truth Tables and Equivalent Statements Conjunction Truth Table p and q q p˄q T T T F T F F F T F F F p 3.2 – Truth Tables and Equivalent Statements Finding the Truth Value of a Conjunction If p represent the statement 4 > 1 and q represent the statement 12 < 9, find the truth value of p ˄ q. p and q 4>1 p is true 12 < 9 q is false The truth value for p ˄ q is false q p˄q T T T F T F F F T F F F p 3.2 – Truth Tables and Equivalent Statements Disjunctions The truth values of the disjunction p or q (p ˅ q) are given in the truth table below. The connective “or” implies “either.” Disjunction Truth Table p or q p q p˅q T T T T F T F T T F F F 3.2 – Truth Tables and Equivalent Statements Finding the Truth Value of a Disjunction If p represent the statement 4 > 1, and q represent the statement 12 < 9, find the truth value of p ˅ q. p or q 4>1 p is true p q p˅q 12 < 9 q is false T T T T F T F T T F F F The truth value for p ˅ q is true 3.2 – Truth Tables and Equivalent Statements Negation The truth values of the negation of p ( ̴ p) are given in the truth table below. not p p ̴p T F F T 3.2 – Truth Tables and Equivalent Statements Example: Constructing a Truth Table Construct the truth table for: p ˄ (~ p ˅ ~ q) A logical statement having n component statements will have 2n rows in its truth table. 22 = 4 rows p q T T T F F T F F ~p ~q ~p˅~q p ˄ (~ p ˅ ~ q) 3.2 – Truth Tables and Equivalent Statements Example: Constructing a Truth Table Construct the truth table for: p ˄ (~ p ˅ ~ q) A logical statement having n component statements will have 2n rows in its truth table. 22 = 4 rows q ~p T T F T F F F T T F F T p ~q ~p˅~q p ˄ (~ p ˅ ~ q) 3.2 – Truth Tables and Equivalent Statements Example: Constructing a Truth Table Construct the truth table for: p ˄ (~ p ˅ ~ q) A logical statement having n component statements will have 2n rows in its truth table. 22 = 4 rows q ~p ~q T T F F T F F T F T T F F F T T p ~p˅~q p ˄ (~ p ˅ ~ q) 3.2 – Truth Tables and Equivalent Statements Example: Constructing a Truth Table Construct the truth table for: p ˄ (~ p ˅ ~ q) A logical statement having n component statements will have 2n rows in its truth table. 22 = 4 rows q ~p ~q ~p˅~q T T F F F T F F T T F T T F T F F T T T p p ˄ (~ p ˅ ~ q) 3.2 – Truth Tables and Equivalent Statements Example: Constructing a Truth Table Construct the truth table for: p ˄ (~ p ˅ ~ q) A logical statement having n component statements will have 2n rows in its truth table. 22 = 4 rows q ~p ~q ~p˅~q p ˄ (~ p ˅ ~ q) T T F F F F T F F T T T F T T F T F F F T T T F p 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ̴p˄ ̴q p q T T T F F T F F ̴p ̴q ̴p ˄ ̴q 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ̴p˄ ̴q p q T T ̴p ̴q F F T F F T F F F T T F T T ̴p ˄ ̴q 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ̴p˄ ̴q p q T T ̴p ̴q F F ̴p ˄ ̴q F T F F T F F F T T F T T F F T The truth value for the statement is false. 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ( ̴ p ˄ r) ˅ ( ̴ q ˄ p) p q r T T T T T F T F T T F F F T T F T F F F T F F F ̴p ̴q ̴r ̴p ˄ r ̴q ˄ p ˅ 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ( ̴ p ˄ r) ˅ ( ̴ q ˄ p) p q r ̴p ̴q ̴r T T T F F F T T F F F T T F T F T F T F F F T T F T T T F F F T F T F T F F T T T F F F F T T T ̴p ˄ r ̴q ˄ p ˅ 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ( ̴ p ˄ r) ˅ ( ̴ q ˄ p) p q r ̴p ̴q ̴r ̴p ˄ r T T T F F F F T T F F F T F T F T F T F F T F F F T T F F T T T F F T F T F T F T F F F T T T F T F F F T T T F ̴q ˄ p ˅ 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ( ̴ p ˄ r) ˅ ( ̴ q ˄ p) p q r ̴p ̴q ̴r ̴p ˄ r ̴q ˄ p T T T F F F F F T T F F F T F F T F T F T F F T T F F F T T F T F T T T F F T F F T F T F T F F F F T T T F T F F F F T T T F F ˅ 3.2 – Truth Tables and Equivalent Statements Example: Mathematical Statements If p represent the statement 4 > 1, and q represent the statement 12 < 9, and r represent 0 < 1, decide whether the statement is true or false. ( ̴ p ˄ r) ˅ ( ̴ q ˄ p) p q r ̴p ̴q ̴r ̴p ˄ r ̴q ˄ p ˅ T T T F F F F F F T T F F F T F F F T F T F T F F T T T F F F T T F T T F T T T F F T F T F T F T F T F F F F F T T T F T F T F F F T T T F F F The truth value for the statement is true. 3.2 – Truth Tables and Equivalent Statements Equivalent Statements Two statements are equivalent if they have the same truth value in every possible situation. Are the following statements equivalent? ~ p ˄ ~ q and ̴ (p ˅ q) p T T F F q T F T F ~p˄~q ̴ (p ˅ q) 3.2 – Truth Tables and Equivalent Statements Equivalent Statements Two statements are equivalent if they have the same truth value in every possible situation. Are the following statements equivalent? ~ p ˄ ~ q and ̴ (p ˅ q) p T T F F q T F T F ~p˄~q F F F T ̴ (p ˅ q) 3.2 – Truth Tables and Equivalent Statements Equivalent Statements Two statements are equivalent if they have the same truth value in every possible situation. Are the following statements equivalent? ~ p ˄ ~ q and ̴ (p ˅ q) p T T F F q T F T F ~p˄~q F F F T Yes ̴ (p ˅ q) F F F T