The ortho:para Ratio of H3+ in Laboratory and Astrophysical Plasmas Ben McCall Kyle Crabtree Dept.
Download ReportTranscript The ortho:para Ratio of H3+ in Laboratory and Astrophysical Plasmas Ben McCall Kyle Crabtree Dept.
The ortho:para Ratio of H3+ in Laboratory and Astrophysical Plasmas Ben McCall Kyle Crabtree Dept. of Chemistry Nick Indriolo Holger Kreckel Dept. of Astronomy H3+: Cornerstone of Interstellar Chemistry NH3 Si C6H7+ H2 8 Proton Affinity Affinity (eV) Proton(eV) 7 6 5 4 C2H2 C4H3+ H C4H2+ C3H2 C3H3+ e H2 C3H+ C+ C2H2 C2H e C2H4 C2H3 C2H5+ e + e C+ CH3+ CH4 e CH3OCH3 CH5+ CH3OH CH3NH2 H2 CH2+ CH e CH3CN CH3+ CH2CO H2O C2H5CN H2 HCN H2 H3O+ H2 CH+ H2O+ H2 3 C3H C e OH N C6H6 C6H5+ NH2 H2CO CH H 2O C2 C OH CO CH4 CO2 N2 O H2 O2 e C OH+ O H3 + H2 H2+ HCO+ CO Observing Interstellar H3 • • • • Equilateral triangle No rotational spectrum No electronic spectrum Vibrational spectrum is only probe • Absorption spectroscopy against background or embedded star • Detected in 1996 in dense molecular clouds: N(H3+) ~ 1014 cm-2 1 2 R(1,1)u R(1,0) 1.02 R(1,1)l AFGL 2136 1.00 0.98 AFGL 2591 0.96 0.94 36640 T. R. Geballe & T. Oka, Nature 384, 334 (1996) + 36660 36680 36700 Wavelength (Å) 37150 37170 Surprise: H3+ in Diffuse Clouds! Relative Intensity 1.01 Cygnus OB2 12 HD 183143 1.00 0.99 u 0.98 R(1,1) R(1,0) l R(1,1) 0.97 3.667 3.668 3.669 3.715 Wav elength (µm) HD 168625 HD 168607 X Per ζ Per HD 21389 HD 169454 BD -14 5037 3.716 3.717 W40 IRS 1a HD 110432 HD 73882 HD 229059 Cyg OB2 5 WR 104 WR 121 HD 183143 HD 20041 HD 204827 HD 154368 HD 29647 Nick Indriolo N. Indriolo, T. R. Geballe, T. Oka, & B. J. McCall, ApJ 671, 1736 (2007) = H3+ Detection Chemistry → Cosmic Rays cosmic-ray ionization rate -] [e = ke [H3+] [H2] electron recombination rate ALS 8828 1 MeV 2 MeV 10 MeV 20 MeV 50 MeV HD 254577 IC 443 N. Indriolo, et al., & B. J. McCall, Astrophys. J., in press (diffuse) (dense) N. Indriolo, B. D. Fields & B. J. McCall, Astrophys. J., 694, 257 (2009) A Puzzle: H3+ Ortho:Para Ratio R(1,0) R(1,1) + Cygnus OB2 12 + para I = 1/2 ortho I = 3/2 No Np ΔE = go gp e -ΔE/kTex Tex ~ 27 K but Tkin ~ 60 K What controls o:p ratio? para-H3+ + e- vs. ortho-H3+ + eexperiment TSR para H2 para-H3+ fraction normal H2 unknown (~0.55?) para-H3+ theory ortho-H3+ K Theory: S.F. dos Santos, V. Kokoouline, and C. H. Greene, J. Chem. Phys. 127, 124309 (2007) Experiment: H. Kreckel, et al. Phys. Rev. Lett. 95, 263201 (2005) Piezo Expansion Source plunger locking nut discharge electrode skimmer high pressure H2 reservoir low pressure pinhole 6 cm piezo actuator CRDS Source Characterization ortho-H3+ para-H3+ para-H3+ p-H2 → 71% para-H3+ n-H2 p-H2 n-H2 → 48% para-H3+ p-H2 p-H2 n-H2 n-H2 Recent TSR Results on H3+ + eBut interstellar H3+ is para-enriched!! 1:5 p-H2:Ar (71% p-H3+) 1:5 n-H2:Ar (48% p-H3+) Extrapolated: 100% p-H3+ 100% o-H3+ H. Kreckel, et al., & B. J. McCall, Physical Review A, in press Imaging Measurements: Hot Ions? H. Kreckel, et al., & B. J. McCall, Physical Review A, in press H3+ + H2 → (H5+)* → H2 + H3+ • simplest bimolecular reaction involving a polyatomic • most common bimolecular reaction in the universe: ~1052 s-1 H5 1 “identity” + 3 “hop” what is branching ratio? α = hop/exchange 3/6 ? T-dependent? 6 “exchange” Nuclear Spin Selection Rules para + para + 1/2 0 = 1/2 ortho → + para + 3/2 0 = 3/2 How does α vary with T? hop α = exch ~2.4 ≠ 0.5! (@ 400 K) Cordonnier et al., JCP 113, 3181 (2000) Experimental Approach ortho-H3+ para-H3+ measure steady state p3[p-H3+]/[H3+] vs p2 Takayoshi Amano (p2) p-H2 + (1-p2) o-H2 pump Liquid-nitrogen cooled hollow cathode Steady-State Model Predictions “high T” model full thermal equilibrium n-H2 p-H2 o/p-H3+ vs. o/p-H2 o/p-H3+ vs. o/p-H2 o/p-H3+ vs. o/p-H2 o/p-H3+ vs. o/p-H2 T↓ → complex↑ more scrambling Recent Measurements H3+ T ~ 130 K Pulse off Abs. Pulse on H5+ Tkin Frequency New Astronomical Observations in diffuse clouds, p2 is thermalized K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., submitted “Low-Temperature” Model f (T,Sid,) Parameter Value(s) Trot 10 K Tcoll 10-160 K Sid 0.1-0.9 Shop 0-0.9 Sexch 0-0.9 koooo kooop koopo koopp kopoo kopop koppo koppp kpooo kpoop kpopo kpopp kppoo kppop kpppo kpppp “State-to-State” Rate Coefficients Steady State of H3+ + H2 Reaction • Assume rate of reaction with H2 is much faster than formation or destruction rates: • Solve for steady state para fraction: K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., submitted H3+ + H2 Reaction Results Sid=0.1 Sid=0.9 K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., submitted H3+ + H2 Reaction Results =0 = K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., submitted Steady State Model Revisited • Include formation and destruction reactions: • Assume steady state, simplify: K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., submitted Model Results for ke,p = ke,o Rate Coefficients from McCall et al., PRA 2004, 70, 052716 Sid=0.9 Sid=0.1 K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., submitted Model Results for ke,p > ke,o Rate Coefficients from dos Santos et al., JCP 2007, 127, 124309 K. Crabtree, N. Indriolo, H, Kreckel, B. A. Tom, & B. J. McCall, Astrophys. J., submitted Summary & Future Directions H3+ + e- Recombination • H3+ + H2 Reaction First high-resolution rate coefficient measurements for ortho and para H3+ • Hop:exchange ratio () decreases with temperature • • H5+ formation at low T, high P! Surprise: Trot ~ 450 K! • • Really need measurements at low Trot! Future measurements at lower temperatures, using 22-pole ion trap (Schlemmer) Astronomical Observations and Modeling • Observations in diffuse clouds indicate H3+ o:p is not thermalized • o:p ratio results from competition between reactions with e- & H2 • Need experimental measurements at lower temperatures • H3+ o:p could serve as thermometer in highly reddened sightlines H3+ Acknowledgments NSF AMO Physics Nick Indriolo Kyle Crabtree Holger Kreckel Carrie Kauffman Brian Tom Molecular Ion Spectroscopy Dreyfus New Faculty, TeacherScholar Awards NASA Laboratory Astrophysics NSF Chemistry & Astronomy Andrew Mills Brian Siller Holger Kreckel Manori Perera Mike Porambo Solid p-H2 C60 Jacob Susanna Brian Brumfield Stewart Weaver Packard Fellowship Air Force Young Investigator Award Cottrell Scholarship Bill Evans Sloan Fellowship Para-H2 Production • Helium cryostat • Catalyst @ 15 K • Up to 99.99% p-H2 n-H2 (25% para) p-H2 NMR of ortho-H2 n-H2 sample p-H2 sample Method: B. A. Tom, S. Bhasker, Y. Miyamoto, T. Momose, B. J. McCall, Rev. Sci. Instr. 80, 016108 (2009)