Lecture #10 OUTLINE • Poisson’s Equation • Work function • Metal-Semiconductor Contacts – equilibrium energy-band diagram – depletion-layer width Read: Chapter 5.1.2,14.1, 14.2 Spring 2007 EE130 Lecture 10, Slide.
Download ReportTranscript Lecture #10 OUTLINE • Poisson’s Equation • Work function • Metal-Semiconductor Contacts – equilibrium energy-band diagram – depletion-layer width Read: Chapter 5.1.2,14.1, 14.2 Spring 2007 EE130 Lecture 10, Slide.
Lecture #10 OUTLINE • Poisson’s Equation • Work function • Metal-Semiconductor Contacts – equilibrium energy-band diagram – depletion-layer width Read: Chapter 5.1.2,14.1, 14.2 Spring 2007 EE130 Lecture 10, Slide 1 Poisson’s Equation Gauss’s Law: area A s : permittivity (F/cm) : charge density (C/cm3) E(x) E(x+Dx) Dx Spring 2007 EE130 Lecture 10, Slide 2 Charge Density in a Semiconductor • Assuming the dopants are completely ionized: = q (p – n + ND – NA) Spring 2007 EE130 Lecture 10, Slide 3 Work Function E0: vacuum energy level FM: metal work function Spring 2007 FS: semiconductor work function EE130 Lecture 10, Slide 4 Metal-Semiconductor Contacts There are 2 kinds of metal-semiconductor contacts: • rectifying “Schottky diode” • non-rectifying “ohmic contact” Spring 2007 EE130 Lecture 10, Slide 5 Ideal MS Contact: FM > FS, n-type Band diagram instantly after contact formation: Schottky Barrier : Equilibrium band diagram: Spring 2007 FBn FM EE130 Lecture 10, Slide 6 Ideal MS Contact: FM < FS, n-type Band diagram instantly after contact formation: Equilibrium band diagram: Spring 2007 EE130 Lecture 10, Slide 7 Ideal MS Contact: FM < FS, p-type metal p-type Si Eo Si Ec FM EF Ev FBp qVbi = FBp– (EF – Ev)FB W Spring 2007 EE130 Lecture 10, Slide 8 FBp = + EG - FM Effect of Interface States on FBn metal FM > FS n-type Si • Ideal MS contact: FBn = FM – • Real MS contacts: A high density of allowed energy states in the band gap at the MS interface pins EF to the range 0.4 eV to 0.9 eV below Ec Eo Si FM qVbi = FB – (Ec – EF)FB FBn Ec EF Ev W Spring 2007 EE130 Lecture 10, Slide 9 Schottky Barrier Heights: Metal on Si Metal FM (eV) FBn (eV) Er 3.12 0.44 Ti 4.3 0.5 Ni 4.7 0.61 W 4.6 0.67 Mo 4.6 0.68 Pt 5.6 0.73 FBp (eV) 0.68 0.61 0.51 0.45 0.42 0.39 FBn tends to increase with increasing metal work function Spring 2007 EE130 Lecture 10, Slide 10 Schottky Barrier Heights: Silicide on Si Silicide ErSi1.7 TiSi2 CoSi2 NiSi WSi2 PtSi FM (eV) 3.78 4.18 FBn (eV) 0.3 FBp (eV) 0.8 4.6 4.65 4.7 5 0.6 0.64 0.65 0.65 0.84 0.52 0.48 0.47 0.47 0.28 Silicide-Si interfaces are more stable than metal-silicon interfaces. After metal is deposited on Si, a thermal annealing step is applied to form a silicide-Si contact. The term metal-silicon contact includes silicide-Si contacts. Spring 2007 EE130 Lecture 10, Slide 11 The Depletion Approximation The semiconductor is depleted of mobile carriers to a depth W In the depleted region (0 x W ): = q (ND – NA) Beyond the depleted region (x > W ): =0 Spring 2007 EE130 Lecture 10, Slide 12 Electrostatics E qND • Poisson’s equation: x s s • The solution is: E x qND s W x V x E( x)dx Spring 2007 EE130 Lecture 10, Slide 13 Depleted Layer Width, W qND W x 2 V x 2K S 0 At x = 0, V = -Vbi 2 sVbi W qND • W decreases with increasing ND Spring 2007 EE130 Lecture 10, Slide 14 Summary: Schottky Diode (n-type Si) metal FM > FS n-type Si Depletion width: Eo Si FM qVbi = FBn – (Ec – EF)FB FBn Ec EF Ev W Spring 2007 EE130 Lecture 10, Slide 15 2 sVbi W qND Equilibrium (VA = 0) -> EF continuous, constant FBn = FM – Summary: Schottky Diode (p-type Si) metal FM < FS p-type Si Eo Depletion width: Si Ec FM EF Ev FBp qVbi = FBp– (EF – Ev)FB W Spring 2007 EE130 Lecture 10, Slide 16 2 sVbi W qN A Equilibrium (VA = 0) -> EF continuous, constant FBp = + EG - FM