Transcript Lecture 7
Lecture 7
OUTLINE
• Work Function
• Metal-Semiconductor Contacts
– Energy band diagrams
– Depletion-layer width
– Small-signal capacitance
Reading: Pierret 14.1-14.2; Hu 4.16
Metal-Semiconductor Contacts
There are 2 kinds of metal-semiconductor contacts:
• rectifying
“Schottky diode”
• non-rectifying
“ohmic contact”
EE130/230A Fall 2013
Lecture 7, Slide 2
Work Function
E0: vacuum energy level
R.F. Pierret, Semiconductor Fundamentals, Figure 14.1
FM: metal work function
EE130/230A Fall 2013
FS: semiconductor work function
Lecture 7, Slide 3
Ideal M-S Contact: FM < FS, n-type
Band diagram instantly
after contact formation:
Equilibrium band diagram:
EE130/230A Fall 2013
Lecture 7, Slide 4
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.2
Ideal M-S Contact: FM > FS, n-type
Band diagram instantly
after contact formation:
Equilibrium band diagram:
Schottky Barrier Height:
qVbi = FBn– (Ec – EF)FB
n
FBn FM
W
EE130/230A Fall 2013
Lecture 7, Slide 5
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.2
Effect of Interface States on FBn
• Ideal M-S contact:
FBn = FM –
• Real M-S contacts:
A high density of allowed
energy states in the
band gap at the M-S
interface “pins” EF to be
within the range 0.4 eV
to 0.9 eV below Ec
FM
FBn
C. C. Hu, Modern Semiconductor Devices for ICs, Figure 4-35
EE130/230A Fall 2013
Lecture 7, Slide 6
Schottky Barrier Heights: Metal on Si
•
Metal
FM (eV)
Er
3.12
Ti
4.3
Ni
4.7
W
4.6
Mo
4.6
Pt
5.6
FBn (eV)
0.44
0.5
0.61
0.67
0.68
0.73
FBp (eV)
0.68
0.61
0.51
0.45
0.42
0.39
FBn tends to increase with increasing metal work function
EE130/230A Fall 2013
Lecture 7, Slide 7
Schottky Barrier Heights: Silicide on Si
Silicide ErSi1.7 TiSi2
CoSi2
NiSi
WSi2
PtSi
FM (eV) 3.78 4.18
FBn (eV) 0.3
FBp (eV) 0.8
4.6 4.65 4.7
5
0.6 0.64 0.65 0.65 0.84
0.52 0.48 0.47 0.47 0.28
Silicide-Si interfaces are more stable than metal-silicon
interfaces and hence are much more prevalent in ICs.
After metal is deposited on Si, a thermal annealing
step is applied to form a silicide-Si contact. The term
metal-silicon contact includes silicide-Si contacts.
EE130/230A Fall 2013
Lecture 7, Slide 8
The Depletion Approximation
The semiconductor is depleted of mobile carriers to a depth W
In the depleted region (0 x W ):
r = q (ND – NA)
Beyond the depleted region (x > W ):
r=0
EE130/230A Fall 2013
Lecture 7, Slide 9
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4
Electrostatics
• Poisson’s equation:
• The solution is:
r qN D
x
s
s
x
qN D
s
W x
V x ( x)dx
EE130/230A Fall 2013
Lecture 7, Slide 10
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4
Depletion Width, W
qN D
W x 2
V x
2K S 0
At x = 0, V = -Vbi
2 sVbi
W
qN D
• W decreases with increasing ND
EE130/230A Fall 2013
Lecture 7, Slide 11
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4
Voltage Drop across the M-S Contact
• Under equilibrium conditions
(VA = 0), the voltage drop across
the semiconductor depletion
region is the built-in voltage Vbi.
• If VA 0, the voltage drop across
the semiconductor depletion
region is Vbi - VA.
EE130/230A Fall 2013
Lecture 7, Slide 12
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.3
Depletion Width, W, for VA 0
Last time, we found that
V x
qN D
W x 2
2K S 0
At x = 0, V = - (Vbi - VA)
2 s (Vbi VA )
W
qN D
• W increases with increasing –VA
• W decreases with increasing ND
EE130/230A Fall 2013
Lecture 7, Slide 13
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4
Charge Storage in a Schottky Diode
• Charge is “stored” on both sides of the M-S contact.
– The applied bias VA modulates this charge.
R.F. Pierret, Semiconductor Fundamentals, Fig. 14.4
EE130/230A Fall 2013
Lecture 7, Slide 14
Small-Signal Capacitance
• If an a.c. voltage va is applied in series with the d.c. bias VA,
the charge stored in the Schottky contact will be modulated at
the frequency of the a.c. voltage
displacement current will flow:
CA
EE130/230A Fall 2013
s
W
Lecture 7, Slide 15
dva
iC
dt
Using C-V Data to Determine FB
CA
s
W
A
s
2 s
Vbi VA
qN D
qN D s
A
2Vbi VA
1
2(Vbi VA )
2
C
qN D s A2
Once Vbi and ND are known, FBn can be determined:
qVbi F Bn ( Ec EF ) FB F Bn
EE130/230A Fall 2013
Lecture 7, Slide 16
Nc
kT ln
ND
Ideal M-S Contact: FM > FS, p-type
p-type
semiconductor
Band diagram instantly
after contact formation:
Equilibrium band diagram:
EE130/230A Fall 2013
Lecture 7, Slide 17
R.F. Pierret, Semiconductor Fundamentals, p. 482
Ideal M-S Contact: FM < FS, p-type
p-type
semiconductor
Band diagram instantly
after contact formation:
Equilibrium band diagram:
Schottky Barrier Height:
F Bp EG F M
FBp
qVbi = FBp– (EF – Ev)FB
W
EE130/230A Fall 2013
Lecture 7, Slide 18
R.F. Pierret, Semiconductor Fundamentals, p. 482
W for p-type Semiconductor
V x
qN A
W x 2
2 K S 0
p-type
semiconductor
At x = 0, V = Vbi + VA
2 s (VA Vbi )
W
qN A
• W increases with increasing VA
• W decreases with increasing NA
EE130/230A Fall 2013
Lecture 7, Slide 19
Summary
EF
Ec
Ec
EF
Ev
Ev
Ec
EF
EF
Ev
Ev
R.F. Pierret, Semiconductor Fundamentals, p. 481
2 s (Vbi VA )
For rectifying contacts: W
qN D
W
2 s (VA Vbi )
qN A
small-signal capacitance C A s / W
EE130/230A Fall 2013
Lecture 7, Slide 20
Summary: Rectifying Contacts
• Schottky barrier height, FB:
– Energy barrier that must be surmounted in order for a
carrier in the metal to enter the semiconductor
• Built-in potential, qVbi:
FBn-(EC-EF)FB for n-type Si, FBp-(EF-Ev)FB for p-type Si
– Ideally qVbi is equal to the work function difference
between the metal and semiconductor.
In practice, for Si:
FBn (2/3)EG and FBp (1/3)EG
EE130/230A Fall 2013
Lecture 7, Slide 21