EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L.
Download
Report
Transcript EE 5340 Semiconductor Device Theory Lecture 25 – Spring 2011 Professor Ronald L.
EE 5340
Semiconductor Device Theory
Lecture 25 – Spring 2011
Professor Ronald L. Carter
[email protected]
http://www.uta.edu/ronc
Ideal 2-terminal
MOS capacitor/diode
conducting
gate,
area = LW
Vgate
-xox
SiO2
0
L
silicon substrate
©rlc L25-21Apr2011
Vsub
y
0
tsub
x 2
MOS surface states**
p- substr = n-channel
VGS
s
VGS < VFB < 0
s < 0
Accum.
ps > N a
VGS = VFB < 0
s =
Neutral
ps = N a
VFB < VGS
s > 0
Depletion
ps < N a
VFB < VGS < VTh
s = |p|
Intrinsic ns = ps = ni
VGS < VTh
s > |p|
Weak inv ni< ns < Na
VGS = VTh
s = 2|p|
©rlc L25-21Apr2011
Surf chg Carr Den
O.S.I.
ns = Na
3
MOS Bands at OSI
p-substr = n-channel
Fig 10.9*
qp
2q|p|
©rlc L25-21Apr2011
xd,max
4
Equivalent circuit
for accumulation
• Accum depth analogous to the accum
Debye length = LD,acc = [eVt/(qps)]1/2
• Accum cap, C’acc = eSi/LD,acc
• Oxide cap, C’Ox = eOx/xOx
C’Ox
• Net C is the series comb
1
1
1
C'tot C'acc C'Ox
©rlc L25-21Apr2011
C’acc
5
Equivalent circuit
for Flat-Band
• Surface effect analogous to the extr
Debye length = LD,extr = [eVt/(qNa)]1/2
• Debye cap, C’D,extr = eSi/LD,extr
• Oxide cap, C’Ox = eOx/xOx
C’Ox
• Net C is the series comb
1
1
1
C'tot C'D,extr C'Ox
©rlc L25-21Apr2011
C’D,extr
6
Equivalent circuit
for depletion
• Depl depth given by the usual formula
= xdepl = [2eSi(Vbb)/(qNa)]1/2
• Depl cap, C’depl = eSi/xdepl
• Oxide cap, C’Ox = eOx/xOx
• Net C is the series comb
1
1
1
C'tot C'depl C'Ox
©rlc L25-21Apr2011
C’Ox
C’depl
7
Equivalent circuit
above OSI
• Depl depth given by the maximum
depl = xd,max = [2eSi|2p|/(qNa)]1/2
• Depl cap, C’d,min = eSi/xd,max
• Oxide cap, C’Ox = eOx/xOx
C’Ox
• Net C is the series comb
1
1
1
C'tot C'd,min C'Ox
©rlc L25-21Apr2011
C’d,min
8
Differential charges
for low and high freq
high freq.
From Fig 10.27*
©rlc L25-21Apr2011
9
Ideal low-freq
C-V relationship
Fig 10.25*
©rlc L25-21Apr2011
10
Comparison of low
and high freq C-V
Fig 10.28*
©rlc L25-21Apr2011
11
Effect of Q’ss on
the C-V relationship
Fig 10.29*
©rlc L25-21Apr2011
12
Flat band condition
(approx. scale)
If
Ec Efp 0.85eV
Then
Efm Efp 0.8eV
VFB fm fp
Al
q(m-cox)=
3.15 eV
EFm
0.8V Vg Vs
©rlc L25-21Apr2011
Ev
p-Si
q(cox-cSi)=3.1eV
Ec,Ox
Eg,ox
~8eV
MS
for flat - band cond
SiO2
qfp=
3.95eV
Ec
EFi
Ev EFp
13
Flat-band parameters
for n-channel (p-subst)
p substrate : VFB ms
Q'ss
C'Ox
e Ox
C'Ox
, Q'ss is the Ox/Si chg den
xOx
For a n poly - Si gate, s m c s
ms
NcNa
Eg
Na
Vt ln 2 Vt ln 0
ni
2q
ni
©rlc L25-21Apr2011
14
Flat-band parameters
for p-channel (n-subst)
n substrate : VFB ms
Q'ss
(no change)
C'Ox
eOx
C'Ox
, Q'ss is the Ox/Si chg den
xOx
For a p poly - Si gate, s m c s
NvNd Eg
Nd
ms Vt ln 2 Vt ln 0
ni 2q
ni
©rlc L25-21Apr2011
Eg
q
15
Typical ms values
ms
(V)
Fig 10.15*
©rlc L25-21Apr2011
NB (cm-3)
16
Flat band with oxide
charge (approx. scale)
Al
If a charge Q'ss is
at the Ox/Si bound,
then at FB cond a
q(Vox)
+<--Vox-->-
charge Q'm Q'ss is q(m-cox)
on the gate surface
E
'
Qss
1 dEc VOx
Ex
e Ox q dx xOx
VFB ms VOx ms
©rlc L25-21Apr2011
'
Qss
'
COx
SiO2
Fm
q(VFB)
p-Si
Ec,Ox q( -c )
fp ox
Ex
Eg,ox
Ec
~8eV
EFi
EFp
Ev
VFB= VG-VB, when
Si bands are flat
Ev
17
Inversion for p-Si
Vgate>VTh>VFB
EOx,x
Vgate> VFB
VOx
0
xOx
Induced ESi
0 depletes
Induced ESi
above threshold
for inversion
©rlc L25-21Apr2011
EOx,x> 0
e- e- e- e- eDepl Reg
Acceptors
Vsub = 0
18
Approximation concept
“Onset of Strong Inv”
• OSI = Onset of Strong Inversion
occurs when ns = Na = ppo and VG = VTh
• Assume ns = 0 for VG < VTh
• Assume xdepl = xd,max for VG = VTh and
it doesn’t increase for VG > VTh
• Cd,min = eSi/xd,max for VG > VTh
• Assume ns > 0 for VG > VTh
©rlc L25-21Apr2011
19
MOS Bands at OSI
p-substr = n-channel
Fig 10.9*
qp
2q|p|
©rlc L25-21Apr2011
xd,max
20
Computing the D.R.
W and Q at O.S.I.
Ex
Emax
2eSi 2 p
xd ,max
q
dEx
Na
dx
eSi
qNa
area 2 p
x
Q'd,max qNa xd,max
©rlc L25-21Apr2011
21
Calculation of the
threshold cond, VT
The threshold condition is reached
when the surface is inverted. The
depletion region has reached the
value of xd,max and the extra charge
is Q'd,max qNBxd,max (n - sub, p - sub)
VT VFB V, where V is the voltage
added to induce Q'd,max across the Ox
©rlc L25-21Apr2011
22
Equations for
VT calculation
p, n substr : VT VFB 2p,n
'
Qd,max
C'Ox
Nd
ni
p Vt ln 0, n Vt ln 0,
Na
ni
Q'd,max qNa,d xd,max , xd,max
2e 2p,n
qNa,d
V 0 for p - substr, 0 for n - substr
©rlc L25-21Apr2011
23
Fully biased n-MOS
capacitor
VG
Channel if
VG > VT
VS
EOx,x> 0
n+ e- e- e- e- e- e-
n+
VD
p-substrate
Vsub=VB
Depl Reg
©rlc L25-21Apr2011
0
Acceptors
L
y
24
MOS energy bands at
Si surface for n-channel
Fig 8.10**
©rlc L25-21Apr2011
25
Computing the D.R.
W and Q at O.S.I.
Ex
Emax
xd ,max
2eSi 2 p (VB VS )
qNa
q
dEx
Na
dx
eSi
area 2 p (VB VS )
x
Qd,max qNa xd,max
©rlc L25-21Apr2011
26
Q’d,max and xd,max for
biased MOS capacitor
Fig 8.11**
xd,max
(mm)
©rlc L25-21Apr2011
Q'd,max
q
-2
(cm )
27
Fully biased nchannel VT calc
p substrate : VG, at threshold VT
VT VC VFB 2p
Q'd,max
VFB V
C'Ox
ni
p Vt ln 0, Q'd,max qNa xd,max ,
Na
xd,max
©rlc L25-21Apr2011
2e 2 p VB VC
qNa
, V 0
28
n-channel VT for
VC = V B = 0
Fig 10.20*
©rlc L25-21Apr2011
29
Fully biased pchannel VT calc
n substrate : VG, at threshold VT
VT VC VFB 2n
Q'd,max
C'Ox
VFB V
Nd
n Vt ln 0, Q'd,max qNdxd,max ,
ni
2e2 n VC VB
xd,max
, V 0
qNd
©rlc L25-21Apr2011
30
p-channel VT for
VC = V B = 0
Fig 10.21*
©rlc L25-21Apr2011
31
n-channel enhancement
MOSFET in ohmic region
Channel
VS = 0
Depl Reg
©rlc L25-21Apr2011
0< VT< VG
EOx,x> 0
n+ e-e- e- e- e-
p-substrate
VB < 0
0< VD< VDS,sat
n+
Acceptors
32
Conductance of
inverted channel
•
•
•
•
•
Q’n = - C’Ox(VGC-VT)
n’s = C’Ox(VGC-VT)/q, (# inv elect/cm2)
The conductivity sn = (n’s/t) q mn
G = sn(Wt/L) = n’s q mn (W/L) = 1/R, so
I = V/R = dV/dR, dR = dL/(n’sqmnW)
L
VD
0
VS
I dL C'Ox VG VC VT mnWdV
©rlc L25-21Apr2011
33
Basic I-V relation
for MOS channel
WmnC'Ox
2
ID
2VG VT VDS VDS
, VDS VG VT
2L
At VDS VDS,sat VG VT , Q'n y L 0 Sat.
so let ID be given by ID VDS,sat ,
for VDS VDS,sat VG VT so
ID ID,sat
Wmn C'Ox
2
VG VT
2L
©rlc L25-21Apr2011
34
I-V relation for
n-MOS (ohmic reg)
mnC'Ox W
2
ID
2VG VT VDS VDS
. Note
2
L
VDS VG VT VDS,sat ,
result is non - physical.
At VDS,sat , n's, y L 0
ID
ID,sat
for
ohmic
non-physical
assume that channel curr.
is const for VDS VDS,sat
ID,sat
mnC'Ox W
VGS VT 2
2
L
©rlc L25-21Apr2011
saturated
VDS,sat
VDS
35
References
* Semiconductor Physics & Devices, by
Donald A. Neamen, Irwin, Chicago,
1997.
**Device Electronics for Integrated
Circuits, 2nd ed., by Richard S. Muller
and Theodore I. Kamins, John Wiley
and Sons, New York, 1986
©rlc L25-21Apr2011
36
Computing the D.R.
W and Q at O.S.I.
Ex
Emax
2eSi 2 p
xd ,max
q
dEx
Na
dx
eSi
qNa
area 2 p
x
Q'd,max qNa xd,max
©rlc L25-21Apr2011
37