Semiconductor Device Modeling and Characterization – EE5342 Lecture 34 – Spring 2011 Professor Ronald L.
Download ReportTranscript Semiconductor Device Modeling and Characterization – EE5342 Lecture 34 – Spring 2011 Professor Ronald L.
Semiconductor Device Modeling and Characterization – EE5342 Lecture 34 – Spring 2011 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/ The npn Gummel-Poon Static Model C RC B RBB B’ ILC IBR ILE IBF ICC - IEC = IS(exp(vBE/NFVt - exp(vBC/NRVt)/QB RE E ©rlc L34-27Apr2011 2 Gummel Poon npn Model Equations IBF = ISexpf(vBE/NFVt)/BF ILE = ISEexpf(vBE/NEVt) IBR = ISexpf(vBC/NRVt)/BR ILC = ISCexpf(vBC/NCVt) QB = (1 + vBC/VAF + vBE/VAR ) {½ + [¼ + (BFIBF/IKF + BRIBR/IKR)]1/2 } ©rlc L34-27Apr2011 3 ©rlc L34-27Apr2011 4 ©rlc L34-27Apr2011 5 Values for fms with metal gate NCNa Al to p - Si : fms fm,Al Si Vt ln 2 ni NCNa Eg Na Vt ln Note : Vt ln 2 ni ni 2q NC Al to n - Si : fms fm,Al Si Vt ln N d fm,Al 4.28, Si 4.05, ni 1.45E10 NC 2.8E19, Eg 1.12, Vt 0.02586 ©rlc L34-27Apr2011 6 Values for fms with silicon gate n poly to p - Si : fms NCNa Si Si Vt ln 2 ni NCNa Eg Na Note : Vt ln 2 Vt ln ni ni 2q Eg NC p poly to n - Si : fms Si Si Vt ln q Nd NC Eg Nd Note : Vt ln Vt ln Nd 2q ni ©rlc L34-27Apr2011 7 Typical fms values fms (V) Fig 10.15* ©rlc L34-27Apr2011 NB (cm-3) 8 Flat band with oxide charge (approx. scale) If a charge Q'ss is at the Ox/Si bound, then at FB cond a Al q(Vox) +<--Vox-->- charge Q'm Q'ss is q(fm-ox) on the gate surface E ' Qss 1 dEc VOx Ex Ox q dx xOx VFB f ms VOx f ms ©rlc L34-27Apr2011 ' Qss ' COx p-Si SiO2 Fm q(VFB) Ec,Ox q(f - ) fp ox Ex Eg,ox Ec ~8eV EFi Ev EFp VFB= VG-VB, when Si bands are flat Ev 9 Flat-band parameters for n-channel (p-subst) p substrate : VFB fms Q'ss C'Ox Ox C'Ox , Q'ss is the Ox/Si chg den xOx For a n poly - Si gate, f s fm s fms NcNa Eg Na Vt ln 2 Vt ln 0 ni 2q ni ©rlc L34-27Apr2011 10 Flat-band parameters for p-channel (n-subst) n substrate : VFB fms Q'ss (no change) C'Ox Ox C'Ox , Q'ss is the Ox/Si chg den xOx For a p poly - Si gate, f s fm s NvNd Eg Nd fms Vt ln 2 Vt ln 0 ni 2q ni ©rlc L34-27Apr2011 Eg q 11 Inversion for p-Si Vgate>VTh>VFB EOx,x VOx 0 xOx Vgate> VFB Induced ESi 0 depletes Induced ESi above threshold for inversion ©rlc L34-27Apr2011 EOx,x> 0 e- e- e- e- e- Depl Reg Acceptors Vsub = 0 12 Approximation concept “Onset of Strong Inv” • OSI = Onset of Strong Inversion occurs when ns = Na = ppo and VG = VTh • Assume ns = 0 for VG < VTh • Assume xdepl = xd,max for VG = VTh and it doesn’t increase for VG > VTh • Cd,min = Si/xd,max for VG > VTh • Assume ns > 0 for VG > VTh ©rlc L34-27Apr2011 13 MOS Bands at OSI p-substr = n-channel Fig 10.9* qfp 2q|fp| ©rlc L34-27Apr2011 xd,max 14 Computing the D.R. W and Q at O.S.I. Ex Emax 2Si 2 f p xd ,max q dEx Na dx Si qNa area 2 f p x Q'd,max qNa xd,max ©rlc L34-27Apr2011 15 Calculation of the threshold cond, VT The threshold condition is reached when the surface is inverted. The depletion region has reached the value of xd,max and the extra charge is Q'd,max qNBxd,max (n - sub, p - sub) VT VFB V, where V is the voltage added to induce Q'd,max across the Ox ©rlc L34-27Apr2011 16 Equations for VT calculation p, n substr : VT VFB 2fp,n ' Qd,max C'Ox Nd ni fp Vt ln 0, fn Vt ln 0, Na ni Q'd,max qNa,d xd,max , xd,max 2 2fp,n qNa,d V 0 for p - substr, 0 for n - substr ©rlc L34-27Apr2011 17 Fully biased n-MOS capacitor VG Channel if V G > VT VS VD EOx,x> 0 e- e- e- e- e- e- n+ n+ p-substrate Depl Reg ©rlc L34-27Apr2011 Acceptors Vsub=VB 0 y L 18 MOS energy bands at Si surface for n-channel Fig 8.10** ©rlc L34-27Apr2011 19 Computing the D.R. W and Q at O.S.I. Ex Emax xd ,max 2Si 2 f p (VB VS ) qNa q dEx Na dx Si area 2 f p (VB VS ) x Qd,max qNa xd,max ©rlc L34-27Apr2011 20 Q’d,max and xd,max for biased MOS capacitor Fig 8.11** xd,max (mm) ©rlc L34-27Apr2011 Q'd,max q -2 (cm ) 21 Fully biased nchannel VT calc p substrate : VG, at threshold VT VT VC VFB 2fp Q'd,max VFB V C'Ox ni fp Vt ln 0, Q'd,max qNa xd,max , Na xd,max ©rlc L34-27Apr2011 2 2 fp VB VC qNa , V 0 22 n-channel VT for VC = VB = 0 Fig 10.20* ©rlc L34-27Apr2011 23 References * Semiconductor Physics & Devices, by Donald A. Neamen, Irwin, Chicago, 1997. **Device Electronics for Integrated Circuits, 2nd ed., by Richard S. Muller and Theodore I. Kamins, John Wiley and Sons, New York, 1986 ©rlc L34-27Apr2011 24