Auger electron yields of metastable Li-like projectile states repopulated by radiative cascades and Auger depletion Manolis Benis Department of Physics, University of Ioannina SPARC.

Download Report

Transcript Auger electron yields of metastable Li-like projectile states repopulated by radiative cascades and Auger depletion Manolis Benis Department of Physics, University of Ioannina SPARC.

Slide 1

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 2

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 3

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 4

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 5

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 6

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 7

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 8

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 9

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 10

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 11

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 12

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 13

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 14

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 15

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 16

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 17

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 18

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 19

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 20

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 21

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 22

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 23

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 24

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 25

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015


Slide 26

Auger electron yields of metastable Li-like projectile states
repopulated by radiative cascades and Auger depletion

Manolis Benis
Department of Physics, University of Ioannina

SPARC workshop, Fodele, September 22-27, 2015

Ion-atom Collisions
Atomic
Energy
levels

continuum
Ea - Auger energy
e-e interaction M

L

Ex
K
capture

K
ionization

K-M
excitation

M-K
radiative
transition

K
KLM
Auger
transition

Ion-atom collision
e-

e-

vt

Zp

Vp
b

Projectile
Ion
Charge q+

Zt
Target
Atom

SPARC workshop, Fodele, September 22-27, 2015

Atomic Structure: q, Zp, Zt , Ex, Ea…
Collision Dynamics: b, Vp , vt …
Cross section:  (Vp , q, Z p , b, vt , Zt , Ea , Ex ,...)
Highly Charged Ions: Few-electrons - simpler
environment for testing theories

Highly Charged Ions
 Basic understanding of atomic collision processes

 QED corrections
 Astrophysical plasmas
 Cometary X-ray emission

 Fusion research
 Radiation damage
 HCI nano-structuring of surfaces

 Guiding of HCI in insulator nano-capillaries
 Accelerator physics
 Instrumentation R & D
SPARC workshop, Fodele, September 22-27, 2015

Projectile Spectroscopy

 Control of the number of electrons on the projectile


Fewer electrons  Less complicated system



Metastable ionic beams

 Easy to study iso-electronic sequences


C3+(1s22s), B2+(1s22s), Be+(1s22s) , …

 Low-Z projectiles  High Auger electron yields
 Kinematic advantages


Zero-degree Auger Projectile Spectroscopy (ZAPS)

SPARC workshop, Fodele, September 22-27, 2015

Populating the 1s2l2l' states
T (or C)

V

RTE
V
NTE
V
Target

Projectile

SPARC workshop, Fodele, September 22-27, 2015

Spin statistics for 2p capture to 1s2s 3S
Spin recoupling

Probability

4
(1s(2s 2 p)3 P) P
6

4
(1s 2s S )2 p P
6
3

4

4

3

1s 2s S + 2p

1
(1s(2s 2 p) P) P
4
3

2
(1s 2s S )2 p P
6
3

Final
breakdown

4P

2

: 2P- : 2P+

8
1
3


12 12 12

SPARC workshop, Fodele, September 22-27, 2015

2

4

3
(1s(2s 2 p) P) P
4

P
R 2
2
2
P  P

1

2

P
R 2 3
P

2

Literature Overview
7

Lee (1991)

Tanis (2004)

6

4

2

2

Ratio - R = e( P)/[e( P+) + e( P--)]

Data:

5

4

3

2

1

7+

2

3

F (1s /1s2s S) + He

0
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

2

Ratio - R = e( P)/[e( P+) + e( P--)]

7

5

4

2

Spin statistics

6

4

3

2

1.875

1
7+

2

3

F (1s /1s2s S) + H2
0

Strohschein et al, PRA 77 022706 (2008)

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Projectile Energy (MeV/u)

Zouros et al, PRA 77 050701 (2008)
SPARC workshop, Fodele, September 22-27, 2015

Pauli exchange interaction (?)
A target electron with spin aligned to the spin
of the 1s projectile:
a) can be captured into the 2p directly to form
the 1s2s2p 4P
b) cannot be captured into the 1s (or 2s) due to
Pauli exclusion.

Tanis et al, PRL 92 133201 (2004)

New idea: So instead it interacts with the 1s (or
2s) via a Pauli Exchange Interaction with one etransferred to the 2p forming additional 4P
states

The Pauli Exchange Interaction is reminiscent of the Transfer-Excitation mechanism,
but with two identical electrons doing the Transfer and the Excitation!
- Rather puzzling and difficult to calculate (not possible to date!)
SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

nl

Zouros et al , PRA 77 050701 (2008)

Significant capture to higher n=3-7
indicated by CDW calculations

SPARC workshop, Fodele, September 22-27, 2015

Radiative Cascade feeding (?)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams
Ne
d 

ddE N I  n  l  0  E  T 
2

4MeV B 3+ [1s2 1S, 1s2s 3S] + H2

Capture
RTE

No lifetime/solid angle corrections

Benis et al, PRA 65 064701 (2002)
SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

22

1s2s S

8
6

22

2
1

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

“Subtract” spectra to obtain pure metastable
beam 1s2s 3S spectrum!

-20

2

4

2

10

3

3

1s(2s2p P) P

f S = 25%

4

12

cm / eV sr)

Mixed state (1s2, 1s2s 3S) spectrum
25% metastable
Ion Beam obtained by foil stripping

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

Practically ground state (1s2)
spectrum. < 3% metastable
Ion Beam obtained by gas stripping
at lower energies

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

Mixed state (1s2 1S, 1s2s 3S ) beams

Strohschein et al, PRA 77 022706 (2008)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid correction factor
Ne
d 2

ddE N I  n  l  0  E  T 

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Hemispherical Deflector Analyser
12MeV C3+(1s2s2p 4PJ )

The effective solid angle correction factor
Hemispherical Deflector Analyser

SIMION Monte Carlo type Calculations
2.0

SIMION
Analytical
o
(max= 2.2 )

F=4
s0= 289 mm

4

Electron Signal (Arb. Units)

5

G

3
2
1
0

1

10

2

10

3

10

VP  (mm)

4

10

max = kinem= 40.3
1.5

1.0

max = 2.0

o

max = 1.8

o

max = 1.5

o

max = 1.0

o

o

SIMION
F=4

4

P

0.5

0.0
225

226

227

228

229

230

231

232

Auger Electron Energy (eV)

Benis et al, NIMB (2015) In press

The lens filters out emitting angles higher than 2o
The lens also filters out electrons generated within it …
SPARC workshop, Fodele, September 22-27, 2015

233

SIMION simulations

Doukas et al, Rev. Sci. Instr. 86 043111 (2015)
SPARC workshop, Fodele, September 22-27, 2015

Revisit of older data

22

1s2s S

8
6
4

1

22

2
2

1s2p D

+ H2

2
0
14
12

f S < 3%
3

10

2

d /dd (10

-20

2

cm / eV sr)

10

3

3

1s(2s2p P) P

f S = 25%

4

12

1s2s2p P

14

1s(2s2p P) P

3+

4 MeV B

8
6
4
2
0
150 152 154 156 158 160 162 164 166 168 170

Electron Energy (eV)

Benis et al, PRA 69 052718 (2004)
SPARC workshop, Fodele, September 22-27, 2015

The effective solid angle correction factor
Ne
d 

ddE N I  n  l  0  E  T 
2

Tandem Parallel Plate Analyser

A spectrometer with well defined solid angle

L2

?

w

l
S

-4

5.0x10

Geometrical
SIMION

-4

4.0x10

 (sr)

-4

3.0x10

d

-4

2.0x10

-4

1.0x10

x
0.0
100

80

60

40

x (mm)

SPARC workshop, Fodele, September 22-27, 2015

20

0

L1

Cascade Feeding and depletion of a state
Order

depopulation

population

Curtis, Am. J. Phys 36 1123 (1968)
SPARC workshop, Fodele, September 22-27, 2015

More SIMION simulations …
Include cascade feeding theoretical calculations in the Monte Carlo SIMION simulations
4+

21

Direct comparison to
the experiment!
(No correction factors …)

3

12 MeV C [1s S, 1s2s S] + He
4000
4

3500

SIMION
Second order cascades
First order cascades
No cascades

P

Electron Counts

3000
2500
2000
2

1500

S

2

2

1000

P+

P_

Testing ground
2

Y ( 4P) / G
2
2
2
Y ( P )  Y ( P )

D

500
0
222

224

226

228

230

232

234

236

238

Auger Electron energy (eV)

Calculations by T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

240

242

244

Spin statistics for 2p capture to 1s2s 3S

SPARC workshop, Fodele, September 22-27, 2015

Mid-Future Prospects
SPARC collaboration:
Extend our studies to high(er) Z elements
 Locate candidate metastable electronic configurations
LS  jj coupling nomenclature, theorists help

 Develop a TDR
Current electron spectrometer in a new setup (UHV chamber, gas jet, etc.)

 Get approved and … Ask for funding …

SPARC workshop, Fodele, September 22-27, 2015

Current and near-future prospects




Investigation of the systematics of the 4P/2P ratio in an
isoelectronic sequence study using He-like ions from Li+ , B3+ ,
C4+ , N5+ , O6+ , F7+ in the 0.1-2 MeV/u
Use different targets such as H2, He, Ne, Ar

In progress:

Installation of terminal gas stripper to
produce ground state beams

Installation of post strippers (foil and gas)
to produce He-like ions at lower energies
SPARC workshop, Fodele, September 22-27, 2015

Ongoing Research
New targets

Higher Energy – 18 MeV
6

6

4

5

W=1521eV,F=4,
VL4 =-684.45V,
VL5=1399.32V

Ne

2
0

-11

4
2

4

P

2

S

He
2

P-

2

P+

P

4+

18 MeV C

W=1521eV, F=4

Ne (20 mTorr)
Fit

4

2

2

D

3

4
2

2
2

2

P
2

D

2

2

S

0
6

P-

5

Ar (5 mTorr)
Fit

4

P

4

P

3
2

P+

2

S

1

P-

2

D

0

2

D

2

1

220

H2

2

Ar (5 mTorr)
Fit

4

4

2

Norm.yields
Norm.fit

P+

0
3

2

0

W=1966eV, F=4

1
2

P-

S

1

P+

4+

Ne (20 mTorr)
Fit

-11

Normalized electron Yields (  10 )

12 MeV C

4+

4

Normalized electron Yields (x10 ) (arb.units)

3

12 MeV C

2

2

S

2

P-

P+
2

D

0
225

230

235

240

245

250

220

225

230

235

240

245

250

Auger Electron Energy (eV)

0
4

Ar

2
0
220

225

230

235

240

245

Auger electron Energy (eV)

SPARC workshop, Fodele, September 22-27, 2015

250

New calculations are needed
to evaluate capture and cascade
contributions for all measured
collision systems

The People
5MV Tandem NCSRT Demokritos, Greece
Dr. S. Harissopulos (Director),
A. Lagogiannis, M. Axiotis, M. Andrianis
University of Crete, Greece
Prof. T.J.M. Zouros
A. Dimitriou (Post doc), I. Madesis (PhD),
A. Laoutaris (MSc), Ch. Nounis (MSc)
University of Ioannina, Greece
Prof. M. Benis
S. Doukas (MSc)

Universidade Nova de Lisboa, Portugal
Prof. J.P. Santos,
Prof. F. Parente,
Prof. M.C. Martins
Sorbonne Universités, Paris, France
Prof. P. Indelicato
Funded by the APAPES Project:
http://apapes.physics.uoc.gr/

ATOMKI, Debrecen, Hungary
Prof. B. Sulik
University of Isparta, Turkey
Prof. O. Sise
York University, Toronto, Canada
Prof. T. Kirchner
SPARC workshop, Fodele, September 22-27, 2015

Co-financed by the European Union and Greek national
funds through OP: Education and Lifelong Learning,
Research Program: THALES Grant # MIS 377289

Thank you for your attendance

Acknowledgement: This research has been co-financed by the European Union (European Social Fund ESF) and Greek national funds through the
Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) Research Funding Program:
THALES. Investing in knowledge society through the European Social Fund, grant number MIS 377289.
SPARC workshop, Fodele, September 22-27, 2015