•ULTRAVIOLET-VISIBLE-NEAR INFRARED (UV-VIS-NIR) SPECTROSCOPY •ELECTRON PARAMAGNETIC RESONANCE (EPR) or ELECTRON SPIN RESONANCE (ESR) OF ZEOLITES Robert A.

Download Report

Transcript •ULTRAVIOLET-VISIBLE-NEAR INFRARED (UV-VIS-NIR) SPECTROSCOPY •ELECTRON PARAMAGNETIC RESONANCE (EPR) or ELECTRON SPIN RESONANCE (ESR) OF ZEOLITES Robert A.

Slide 1

•ULTRAVIOLET-VISIBLE-NEAR INFRARED
(UV-VIS-NIR) SPECTROSCOPY
•ELECTRON PARAMAGNETIC RESONANCE (EPR)
or ELECTRON SPIN RESONANCE (ESR)
OF ZEOLITES

Robert A. SCHOONHEYDT
Center for Surface Chemistry and Catalysis
K.U. Leuven
Kasteelpark Arenberg 23, 3001 Leuven
Belgium
[email protected]


Slide 2

OUTLINE
1. Principles of UV-VIS-NIR
- physical basis
- methodology
2. In-situ UV-VIS
3. Optical and fluorescence microscopies
4. Principles of EPR
- physical basis
- methodology
5. In-situ EPR
6. Pulse EPR
7. Coordination of transition metal ions (TMI)
8. Conclusions


Slide 3

UV-VIS-NIR

Wavelength nm
Wavenumber
Frequency

cm-1
Hz

200

375

750

2500

50000

26664

13300

4000

8x1014

4x1014

1.2x1014

1.5x1015

UV

VISIBLE

NIR


Slide 4

What do we measure ?
Molecules: unsaturated

  * and

n  * transitions

Energy level diagramme

n π *

Antibonding

n  *

π*
π π *

Antibonding

  *

*

π

Nonbonding

π

Bonding



Bonding


Slide 5

Transitions Metal Ions
d – d transitions
Ligand- to Metal Charge Transfer
(LMCT)


Slide 6

Transitions Metal Ions
d – d transitions
Metal - to Ligand Charge Transfer
(MLCT)
example: [Cr(benzene)2]+


Slide 7

UV - VIS - NIR: Methodology

Powdered samples  Diffuse Reflectance Spectroscopy (DRS)
Principle
x
I0
J0

I

J + J

x
I + I

J


Slide 8

Ideal Case: Kubelka – Munck formula

F R  

1  R  2
2 R



K

 kc

S

scattering intensity from infinitely thick sample
R∞ =

scattering intensity from infinitely thick white standard

K : Kubelka-Munck absorption coefficient
S : Kubelka-Munck scattering coefficient


Slide 9

Conditions for use of K M-formula

•diffuse monochromatic irradiation
•isotropic scattering
•infinite sample thickness
•low concentration of absorbing centers
•uniform distribution of absorbing centers
•absence of fluorescence


Slide 10

UV – VIS – NIR: instrumentation

•Every compagny has a UV-VIS-NIR spectrophotometer with
two sources ( Nerst glower, D2 lamp) and two detectors (PbS, PM).
•Integration sphere for DRS
•White standards: MgO, BaSO4, HALON.


Slide 11

IN – SITU UV-VIS-NIR
Praying Mantis

Optical fibre technology
O ptic al fib er
H ig h-tem p. pr ob e

hn

F low in

U V - vis s ourc e
O ven
R eac tor
C atalys t b ed

Gas inlet
M u lti-c h ann el
d etec tor

C om pu ter

Gas outlet

Most sensitive region: VISIBLE
 low background
 sensitive detection: PM

Q u artz w ool

GC

F low out


Slide 12

IN – SITU UV-VIS-NIR

Examples:
d d (pseudo)tetrahedral Co2+
O  Cr6+ charge transfer (chromate, dichromate)
O  Cu2+ bis(µ-oxo)dicopper


Slide 13

Microporous crystalline metal-containing
Aluminiumphosphates:isomorphous substitution

O

O

-1

Al
O

O

-2

Co
O O

O

Al
O

O

O

Co2+

O

+1

O

-1

P
O

O

-1

P
O

Isomorphous
substitution
O

O

+1

Al
O

O

O

AlPO4-5
AFI


Slide 14

CoAPO-5: in situ synthesis
synthesis C oAPO -5
2.2

1.8
1.6

absorbance

Absorbance

2.0

24u
1.4
16u
1.2
1.0
0.8
0.6

0u

25°c

0.4
500

1000

1500

2000

wavelength

Wavelength (nm)

Synthesis time

2500


Slide 15

CoAPO-5 synthesis: spectra at RT


Slide 16

Chromate reduction with CO in zeolite Y


Slide 17

bis( µ-oxo )dicopper in ZSM-5

C Z -3 1 -0 .1 6
C Z -3 1 -0 .3 4

a b s o rp tio n (a .u .)

C Z -3 1 -0 .5 8

10000

20000

30000

40000
-1

w a ve n u m b e r (cm )

50000


Slide 18

OPTICAL and FLUORESCENCE MICROSCOPIES


Slide 19

Intergrowth structure of ZSM-5

Accessibility?


Slide 20

Applications
Oligomerization of furfurylalcohol in ZSM-5 and mordenite


Slide 21

Applications

Oligomerization of styrene in ZSM-5

+

H+
R

R

+
R

R

+

+
R

R

R R
B

R
B

A

R
D

T rim e tric o lo g o m e rs

E


Slide 22

oligomerization of styrene: absorption spectra


Slide 23

Decomposition of template molecules in CrAPO-5


Slide 24

Decomposition of template molecules and intergrowth structures
CrAPO-5

SAPO-34

SAPO-5

ZSM-5


Slide 25

ELECTRON PARAMAGNETIC RESONANCE

magnetic moment of the unpaired elelctron



µ   g  S   2h S

µ

z

  g S

z

  2h S

z


S = dimensionless spin angular momentum vector of the electron

S2 = s(s+1) s = ½
SZ =ms ms = 1/2, -1/2
  e h  9 ,2741 x10  24 JT 1

= Borhmagneton

2me

g, spectroscopic splitting factor = 2.0023
ħ = h/2π
γ = gyromagnetic ratio


Slide 26

ZEEMAN INTERACTION
EZ = -µZB0 = gβB0ms
ms = ½: 1/2g βB0
ms = -½: -1/2g βB0

E

ms = 1/2
E = gβB0
ms = - 1/2

B0

Resonance condition: hν = E = gβB0


Slide 27

EPR: powder spectra
All possible orientations of the spins
 Each orientation has its own resonance condition
 Spectra are superpositions of all those individual spectra

isotropic

axially symmetric

orthorhombic


Slide 28

EPR: Measurement of g values
measurement at constant frequency and varying magnetic field
Band name

band range, GHz

L
S
C
X
K
Q
V
W

g=

hn

B

1.5
2.6-4
4-6
8.2-12.4
18-26.5
33-50
50-75
75-100

= 7,145x10-9 ν/B0

to be measured with gaussmeter

0

to be read from microwave bridge
reference: DPPH gr = 2,0036 (diphenylpicrylhydrazine)

hn  g B
B
g  g
B
r

r

0

0



g B
r

r


Slide 29

EPR: METHODOLOGIES
Resonance cavities


Slide 30

EPR: Spin Hamiltonian

-Hyperfine interaction: unpaired electron-nuclear spin: I mI = I, I - 1,…..,- I
each energy level of the electron is split according to mI
selection rule for EPR: ms = 1: mI = 0

- S > ½  more than one unpaired electron: ZERO FIELD SPLITTING
- QUADRUPOLAR INTERACTION: nuclear spins with I > 1/2

-SPIN HAMILTONIAN

 

H   S . g .B  S A . I  S . D . S  I . P . I


Slide 31

EPR: Quantitative

N  Nr

I

g r S r ( S r  1)

Ir

g

S ( S  1)


Slide 32

In situ EPR

Set-up


Slide 33

FeAPO-5

Example: calcination of FeAPO-5


Slide 34

PULSE EPR

D. Goldfarb, Weizmann Institute, Israel
ESEEM: electron spin echo envelope modulation
ENDOR: electron nuclear double resonance
Examples:
1. Interaction of Cu2+ with Al nuclei in the zeolite lattice
2. Copper –histidine complexes in supercages of zeolite Y.


Slide 35

Copper – histidine complexes in supercages of zeolite Y

g‫ا‬

g‫اا‬

A‫(اا‬mT)

d – d (cm-1)

A

2.054

2.31

15.8

15200

B

2.068

2.25

18.3

15600


Slide 36

TRANSITION METAL IONS IN ZEOLITES


Slide 37

Coordination to lattice oxygens

Characteristics
•Low coordination number
•Free coordination sites

•Low symmetry

Examples: Cu2+, Co2+


Slide 38

Cu2+: DRS + EPR

ZSM-5

Zeolite A


Slide 39

Cu2+: Summary of EPR parameters and d – d transitions

Zeolite

g

A/mT

g

A/mT

mordenite

2.327

15.42

2.062

1.49

ZSM 5

2.277

16.82

2.057

1.19

A, X, Y

2.387

12.20

2.069

1.34

Y, chabasite

2.336

15.85

2.070

1.93

d-d transitions/cm-1
mordenite

12500

13700

14800

A, X, Y

10400

12300

14800

Y, chabasite

10800

12900

14800

ZSM 5


Slide 40

Coordination of Co2+ and Cu2+ to sixrings: LF or AOM

Fixed oxygens: Cu2+/Co2+ in the center of the six- ring on trigonal axis
Cu2+: doubly degenerate ground-state  Jahn-Teller distorsion

Co2+: off-axial displacement by 0.078 – 0.104nm


Slide 41

Coordination to six-rings in LTA and FAU
Cu2+


Slide 42

Cu2+:orbital interactions between d(Cu2+) and p(0)


Slide 43

Cu2+in ZSM-5: α sites with zero, one and two Al’s

0
T5

O6

1
Al

T 11

O5

O1

2

2.13

Al

2.02

2.90

1.98

3.09

T1

T4

T7

O4
O3

3.24
2.90

1.98
3.21

1.96
2.12

T8

Al

3.40
Al

binding energy
g-factors

-651
2.29 2.10 2.05

2'

3

4
3.41

2.00

1.94

2.07

2.08

2.00

2.16

Al
2.42

2.27
2.00

3.04

Al

3.26

-498
2.31 2.08 2.07

2.32
3.40

1.98

2.46

-635
2.33 2.10 2.05

2.62

3.46
2.06

3.14

3.19

2.06

-638
2.29 2.09 2.05

3.15
Al

3.60

2.41

O2
T2

2.88

2.92
Al

1.98

-481
2.33 2.08 2.07


Slide 44

Cu2+in ZSM-5: β sites with zero, one and two Al’s

0

1

O6

2

O5

Al

O1
T4

T 10

O2

O4
T 11

1.89

1.96

Al

Al

1.88

1.89

2.11

1 .9 8

1 .9 3

1.87

2 .1 4

1 .8 7

Al

T7

-715
2.23 2.07 2.04

4

5

3.37

3 .6 2

-677
2.25 2.10 2.03

-683
2.24 2.07 2.04

3 .4 6

3.22

1.93

1.96

2.06

1.86

2.09

1 .9 6

2 .4 2

Al
1.87

3 .1 5

1 .7 9
O
H

Al
3.45

-532
2.24 2.07 2.04

Al

3.55

3.53

binding energy
g-factors

2.07

2.08

Al

1.98

O3

1.95

3 .2 4

3.36

3.50

T5

T1

3

3.57

-514
2.25 2.09 2.04

4 .1 0

Al
2 .0 4


Slide 45

Cu2+in ZSM-5: γ sites with zero, one and two Al’s

0

1
3 .4 4

O6
T7

2
3.38

T7

Al

O1

O5
T10

T10
O4

1.96

T11

Al

Al

O2

1 .9 5

1 .9 5

1.93

1.91

2.05

Al

Al

O3

2.17

1.96

Al
1.91

T12

T12

3.00

1 .9 6

1 .9 6

2.09

T11

3

3 .4 1

3.27

3.37

binding energy
g-factors

-698
2.25 2.06 2.06

4

5

1 .9 8

2 .1 0

1 .9 4

-662
2.27 2.07 2.06

6

3 .2 8

3 .3 1

3 .2 9

Al

-680
2.26 2.07 2.05

2 .0 4

2 .0 8

2 .0 7

2 .0 2

1 .9 0

2 .0 2

Al

Al
2 .0 6

1 .9 7

1 .9 3

Al
3 .3 2

-656
2.29 2.07 2.06

3 .3 0

-523
2.27 2.06 2.06

3 .0 9

-505
2.28 2.08 2.05


Slide 46

Cu2+in ZSM-5: δ sites with zero, one and two Al’s

0

1

2
H

T2

1.78 O

2.03
T6

1.92

2.01

2.09

T1

3.57

Al

1.97

1.92
T9

T10

binding energy
g-factors

3.08
Al

1.92

-482
2.27 2.09 2.05

1.95

2.93
2.05

-483
2.25 2.08 2.05

Al
1.99

4.43

3.51


Slide 47

Cu2+in Zeolite: O  Cu2+ charge transfer

cm-1/1000

ν (cm-1) = 30,000[χopt(0)-χopt(Cu2+)]


Slide 48

DRS spectrum of Co2+in Zeolite A


Slide 49

DRS spectrum of Co2+in Zeolite Y and its decomposition


Slide 50

DRS spectrum of Co2+in LTA and FAU:visible region


Slide 51

Co2+in FAU: interpretation

LF: trigonal Co2+
T: pseudo-tetrahedral Co2+ in site I’

HF: pseudo-octahedral Co2+ in site I


Slide 52

Coordination sites in pentosil zeolites(ZSM-5, MOR, FER)


Slide 53

Co2+ spectra in pentasil zeolites(ZSM-5, MOR, FER)


Slide 54

CONCLUSIONS

1. Significant technical advancement
DRS  in situ  single crystal
EPR
wide range of resonance frequencies
 in situ
 pulse
2. Coordination of transition metal ions
 maximize coordination number
 site distortion
 number of Al tetrahedra
3. In situ
UV-VIS: catalyst activation: chromate  Cr3+
active site: bis(µ-oxo)dicopper
isomorphous substitution: Co2+
EPR: isomorphous substitution of Fe3+


Slide 55

CONCLUSIONS

4. Pulse EPR:
- interaction TMI – Al in lattice
- coordination chemistry of Cr(histidine)x in supercages
- In situ techniques and pulse EPR give nice results in
well-chosen problems.
- Specialists are necessary; these are not routine
measurements


Slide 56

Thanks to

Collaborators:
(D. Packet, S. De Tavernier, M. Uytterhoeven,
B. Weckhuysen, A. Verberckmoes, M. Groothaert,
H. Leeman)
Collaborations:
K. Pierloot and A. Ceulemans
K. Klier
Financial support:
Concerted Research Action
Fund for Scientific Research