ENGI 1313 Mechanics I Lecture 11: 2D and 3D Particle Equilibrium Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of.

Download Report

Transcript ENGI 1313 Mechanics I Lecture 11: 2D and 3D Particle Equilibrium Shawn Kenny, Ph.D., P.Eng. Assistant Professor Faculty of Engineering and Applied Science Memorial University of.

Slide 1

ENGI 1313 Mechanics I

Lecture 11:

2D and 3D Particle Equilibrium

Shawn Kenny, Ph.D., P.Eng.
Assistant Professor
Faculty of Engineering and Applied Science
Memorial University of Newfoundland
[email protected]


Slide 2

Chapter 3 Objectives
to introduce the concept of the free-body
diagram for a particle.
 to show how to solve particle equilibrium
problems using the equations of
equilibrium


2

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 3

Lecture 11 Objectives


3

to further examine and apply Chapter 3
objectives in 2D and 3D space

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 4

Note on Free Body Diagram
F2



Force Sense and Solution


Negative sign indicates
the force sense is
opposite that shown
on the FBD





F

y

0

F1= mg

 F1  F 2  0
F1   F 2

F2

F1= mg
4

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 5

Omit
Ch.3
Spring
Problems

5

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 6

Example 11-01


6

Each cord can sustain a
maximum tension of 200 N
Determine the largest weight
of the sack that can be
supported. Also, determine
θ of cord DC for equilibrium.

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 7

Example 11-01 (cont.)


Where to Start?





F

x

0





F

y

0

FBE
30

B
45

C

FBC

FCB

Point B
2 Equations
3 Unknowns
FAC

FAB
45

A

60

© 2007 S. Kenny, Ph.D., P.Eng.

FAH

60

H
FAH

7



FCA
Point C
2 Equations
3 Unknowns

FBA

Point A
2 Equations
3 Unknowns

FCD

Point H
1 Equation
2 Unknowns
but….
Newton’s 3rd Law

W = mg
ENGI 1313 Statics I – Lecture 11


Slide 8

Example 11-01 (cont.)
FBD at Point H
 What Cord Will Have the
Maximum Tension?


Educated guess
 Experience
 Theoretical approach


FAH

H

• Assume W = 1N
• Maximum cord tension


8

200 N

© 2007 S. Kenny, Ph.D., P.Eng.

W = mg




F

y

0

 F AH  W  m g

ENGI 1313 Statics I – Lecture 11


Slide 9

Example 11-01 (cont.)


FBD at Point A




F

0 

x

F AB  F AC

 F AB cos 45

cos 60



cos 45



 F AC cos 60





0

 0 . 7071 F AC

F AB  0 . 7071 F AC  0 . 5176 N




F

y

 0  F AB sin 45

0 . 7071 F AC sin 45





 F AC sin 60

 F AC sin 60

0 . 5 F AC  0 . 866 F AC  1  0





 F AH  0

FAC

FAB
45

© 2007 S. Kenny, Ph.D., P.Eng.

60

W  0

FAH = W = 1N

F AC  0 . 7321 N
9

A

ENGI 1313 Statics I – Lecture 11


Slide 10

Example 11-01 (cont.)


FBD at Point B




F

x

0 

FBC  FBA cos 45

FBC  FBA cos 45  FBE cos 30




 FBE cos 30





F

y

0 

 0 . 5176 N sin 45

 FBA sin 45




 FBE sin 30

0

0



FBC  0 . 732 N cos 30  0 . 5176 N cos 45






 0 . 268 N

 FBE sin 30  0




0

FBE
30

F BE  0 . 7320 N

B
45

FBC

FBA = FAB = 0.5176N
10

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 11

Example 11-01 (cont.)


FBD at Point C




F

0 

x

FCD cos   FCA cos 60



 FCB  0

FCD cos   0 . 7321 N cos 60  0 . 268 N  0 . 6341 N






F

y

0 

 FCA sin 60

FCD sin   0 . 7321 N sin 60

F
F

y



x

  tan
11

1

FCD sin 
FCD cos 





 FCD sin   0

 0 . 6340 N



 FCD 

0 . 6340 N
sin 

 0 . 8966 N

0 . 6340 N
0 . 6341 N

 0 . 6340 N 

  45
 0 . 6341 N 

© 2007 S. Kenny, Ph.D., P.Eng.

FCB = FBC = 0.268N FCD
C

60



FCA = FAC = 0.7321N
ENGI 1313 Statics I – Lecture 11


Slide 12

Example 11-01 (cont.)


Cord Forces


Analysis summary unit force

F AH  1


 F AB  0 . 5176
F
 0 . 7321
AC

F 
 F BE  0 . 7320

F
 0 . 268
 BC
 F  0 . 8966
 CD


12





N






Maximum force
• 200 N

F AH  1


 F AB  0 . 5176
F
 0 . 7321
AC
F  200 
 F BE  0 . 7320

F  0 . 268
 BC
 F  0 . 8966
 CD

© 2007 S. Kenny, Ph.D., P.Eng.


 F AH



 F AB

F
 N   AC

 F BE


F

 BC

 F

 CD

ENGI 1313 Statics I – Lecture 11

 200 

 104 
 146 
N
 146 

 53 . 6

 179 


Slide 13

Example 11-01 (cont.)


Use of Vector Algebra in
Mathematical Software
to Solve Mechanics Problems


Mathcad

• www.mathcad.com



Engineering calculations

This discussion on the use of Mathcad is
just for knowledge
 It is not part of any course requirement


13

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 14

Example 11-01 (cont.)


Mathcad Solution


14

Set-up equilibrium
equations

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 15

Example 11-01 (cont.)


Mathcad Solution






15

Uses a command Find to
solves a system of linear
equations
This system of linear
equations is
based on the FBD
analysis that defines the
equilibrium equations (Fx
and Fy)
The Find command
function requires an
initial guess or estimate of
the forces and angle ()
to start the mathematical
search of the solution

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 16

Example 11-01 (cont.)


Mathcad Solution


16

Solve system of equations

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 17

Particle Equilibrium in 3D
Newton’s 1st Law




 F  F1  F2  F3  0

Cartesian Vector
 Scalar components = 0

3 Equations
 Solve for at most 3 unknowns












17

© 2007 S. Kenny, Ph.D., P.Eng.


F x ˆi 






F y ˆj 

F

x

0

F

y

0

F

z

0

ENGI 1313 Statics I – Lecture 11




Fz kˆ  0


Slide 18

Comprehension Quiz 11-01


In 3-D, the direction of a force is known but not
the force magnitude, how many unknowns
corresponding to that force remain?








18

A) One
B) Two
C) Three
D) Four

Answer: A

H int :



F  F uˆ

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 19

Comprehension Quiz 11-02


In 3-D, when you don’t know either the direction
or magnitude of a force, how many unknowns do
you have corresponding to that force?








19

A) One
B) Two
C) Three
D) Four

Answer: C

H int :

© 2007 S. Kenny, Ph.D., P.Eng.



F  F uˆ

uˆ  cos  ˆi  cos  ˆj  cos  kˆ

ENGI 1313 Statics I – Lecture 11


Slide 20

Comprehension Quiz 11-03


Four forces act at point A and the system
is in equilibrium. Select the correct force
vector F4 to balance the system. z
A)
B)
C)
D)


20


F4

F4

F4

F4



  20 ˆi  10 ˆj  10 kˆ N
  10 ˆi  20 ˆj  10 kˆ N
  20 ˆi  10 ˆj  10 kˆ N



none of the above




F3 = 10 N
A

y
F1 = 20 N
x

Answer: D
© 2007 S. Kenny, Ph.D., P.Eng.

F2 = 10 N

ENGI 1313 Statics I – Lecture 11


Slide 21

Classification of Textbook Problems

Hibbeler (2007)

21

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11


Slide 22

References
Hibbeler (2007)
 http://wps.prenhall.com/esm_hibbeler_eng
mech_1


22

© 2007 S. Kenny, Ph.D., P.Eng.

ENGI 1313 Statics I – Lecture 11