A stepwise approximation for estimations of multilevel hydraulic tests in heterogeneous aquifers PRESENTER: YI-RU HUANG ADVISOR: CHUEN-FA NI DATE: 2011-3-10 2011/3/10
Download ReportTranscript A stepwise approximation for estimations of multilevel hydraulic tests in heterogeneous aquifers PRESENTER: YI-RU HUANG ADVISOR: CHUEN-FA NI DATE: 2011-3-10 2011/3/10
A stepwise approximation for estimations of multilevel hydraulic tests in heterogeneous aquifers PRESENTER: YI-RU HUANG ADVISOR: CHUEN-FA NI DATE: 2011-3-10 2011/3/10 1 Outline Introduction Motivation Objective Methodology Results & Discussion Conclusions Future work 2011/3/10 2 Introduction Ground water investigations have relied on the determination of aquifer parameters. Knowledge of detailed spatial distributions of hydraulic properties is important to improve our ability to predict water and solute movement in the subsurface. Hydraulic tomography is a viable technology to estimate the parameters in heterogeneous aquifer. [Gottlieb & Dietrich, 1995, Butler et al, 1999, Vasco et al., 2000, Yeh & Liu, 2000, Liu et al., 2002, Bohling et al., 2002, McDermott et al., 2003, Brauchler et al., 2003, Zhu & Yeh, 2005, Liu et al., 2007, Straface et al., 2007, Illman et al., 2007] 2011/3/10 3 DATA 2011/3/10 4 well well packer packer Pumping packer packer observation packer packer packer (a) packer packer 2011/3/10 packer packer packer observation Pumping observation packer (c) packer observation Pumping packer packer (b) packer observation packer observation packer packer Pumping observation observation packer packer packer packer (d) 5 Introduction Hydraulic tomography • Data collection: Cross-hole pumping test To obtain many independent pumping test data. • Data integration: Numerical inversion To integrate information of aquifer and estimate parameters. 2011/3/10 The K tomogram 6 Motivation PUMP PUMP OBS. OBS. PACKER PACKER 10 10 Depth (m) Depth (m) 5 0 5 0 0 5 10 15 20 0 5 10 X (m) 20 104 104 obs no.1 obs no.2 obs no.3 obs no.1 obs no.2 obs no.3 obs no.4 obs no.5 100 Pressure (mH2O) 100 Pressure H2O (m) 15 X (m) 96 96 92 92 88 2011/3/10 88 7 84 0 40 80 120 Time (s) 160 200 0 40 80 120 Time (s) 160 200 Motivation 2011/3/10 8 packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer packer The limit of equipment in field test. 10 Changing the packer position. Druck 13m 8 Druck 12m 104 6 obs no.1 obs no.2 obs no.3 100 Pressure H2O (m) Pressure (mH2O) Druck 14m Druck 11m 4 0 1000 2000 3000 96 92 Time (s) The field pumping test data. 88 0 40 80 120 160 Time (s) 2011/3/10 10 200 Objective To conduct numerical investigations to assess how and to what degree the accuracy of the field tests for estimation. 2011/3/10 11 Methodology Generation of random field A series of pumping events Many packers, obtain data simultaneously Limited packers, obtain data sequentially Numerical model 2011/3/10 Comparison of the results 12 Generation of random field K (m/s) 10 Depth (m) 1.60E-04 1.50E-04 1.40E-04 1.30E-04 1.20E-04 1.10E-04 1.00E-04 9.00E-05 8.00E-05 7.00E-05 6.00E-05 5.00E-05 5 0 OBS. 0 5 10 PUMP 15 20 X (m) 10 10 0 10 Depth (m) Depth (m) Depth (m) 5 5 0 0 5 10 Mean: 0.0001m/s Variance: 0.1 Correlation length: 20x5m 15 20 5 0 0 5 OBS. X (m) 10 15 20 0 5 X (m) 10 15 20 15 20 X (m) PUMP 10 10 0 2011/3/10 0 5 Depth (m) Depth (m) Depth (m) 5 10 5 0 10 X (m) 15 20 5 0 0 5 10 X (m) 15 20 0 5 10 X (m) 13 A series of pumping events 104 104 obs no.1 obs no.2 obs no.3 100 Pressure H2O (m) Pressure H2O (m) 100 96 96 92 92 88 88 0 40 obs no.1 obs no.2 obs no.3 80 120 160 200 0 200 Time (s) obtain data simultaneously 2011/3/10 400 600 Time (s) obtain data sequentially Numerical model 14 Results & Discussion K (m/s) 10 Depth (m) 1.60E-04 1.50E-04 1.40E-04 1.30E-04 1.20E-04 1.10E-04 1.00E-04 9.00E-05 8.00E-05 7.00E-05 6.00E-05 5.00E-05 5 0 5 K (m/s) 10 0.0002 Depth (m) Correlation coefficient 0.867 Estimated K value 5 0.00016 0 0.00012 0 5 10 15 20 X (m) K (m/s) 8E-005 10 4E-005 0 0 4E-005 8E-005 0.00012 6.00E-05 0 2011/3/10 0 5 Objective K 15value 10 X (m) 20 20 K (m/s) 1.60E-04 1.50E-04 1.40E-04 1.30E-04 1.20E-04 1.10E-04 1.00E-04 9.00E-05 8.00E-05 7.00E-05 6.00E-05 5.00E-05 0.0002 10 0.00016 0.00012 Correlation coefficient 0.743 5 0 0 5 10 15 20 X (m) 8E-005 K (m/s) 10 4E-005 Depth (m) Depth (m) 5 1.40E-04 1.35E-04 1.30E-04 1.25E-04 1.20E-04 1.15E-04 1.10E-04 1.05E-04 1.00E-04 9.50E-05 9.00E-05 8.50E-05 8.00E-05 7.50E-05 7.00E-05 0.00016 6.50E-05 0.0002 15 Depth (m) 1.60E-04 1.50E-04 1.40E-04 1.30E-04 1.20E-04 1.10E-04 1.00E-04 9.00E-05 8.00E-05 7.00E-05 6.00E-05 5.00E-05 10 X (m) Estimated K value 0 5 0 0 4E-005 8E-005 0.00012 0.00016 0 0 5 Objective K value 10 15 X (m) 20 15 1.20E-04 1.15E-04 1.10E-04 1.05E-04 1.00E-04 9.50E-05 9.00E-05 8.50E-05 8.00E-05 7.50E-05 0.0002 7.00E-05 6.50E-05 Conclusions • To obtain the data in each depth by changing packer position is practicable in field test. • The field data we obtained are usability to estimate the spatial distribution of hydraulic properties. 2011/3/10 16 Future work • To conduct more numerical examples and insight the application for practical problem. the degree of heterogeneity the observation intervals the duration of sampling time the extension of numerical boundaries 2011/3/10 17 Thanks for your attention~ 2011/3/10 18