A stepwise approximation for estimations of multilevel hydraulic tests in heterogeneous aquifers PRESENTER: YI-RU HUANG ADVISOR: CHUEN-FA NI DATE: 2011-3-10 2011/3/10
Download
Report
Transcript A stepwise approximation for estimations of multilevel hydraulic tests in heterogeneous aquifers PRESENTER: YI-RU HUANG ADVISOR: CHUEN-FA NI DATE: 2011-3-10 2011/3/10
A stepwise approximation for
estimations of multilevel hydraulic
tests in heterogeneous aquifers
PRESENTER: YI-RU HUANG
ADVISOR: CHUEN-FA NI
DATE: 2011-3-10
2011/3/10
1
Outline
Introduction
Motivation
Objective
Methodology
Results & Discussion
Conclusions
Future work
2011/3/10
2
Introduction
Ground water investigations have relied on the
determination of aquifer parameters.
Knowledge of detailed spatial distributions of hydraulic
properties is important to improve our ability to predict
water and solute movement in the subsurface.
Hydraulic tomography is a viable technology to estimate the
parameters in heterogeneous aquifer.
[Gottlieb & Dietrich, 1995, Butler et al, 1999, Vasco et al., 2000, Yeh & Liu, 2000, Liu et al., 2002, Bohling et al., 2002,
McDermott et al., 2003, Brauchler et al., 2003, Zhu & Yeh, 2005, Liu et al., 2007, Straface et al., 2007, Illman et al., 2007]
2011/3/10
3
DATA
2011/3/10
4
well
well
packer
packer
Pumping
packer
packer
observation
packer
packer
packer
(a)
packer
packer
2011/3/10
packer
packer
packer
observation
Pumping
observation
packer
(c)
packer
observation
Pumping
packer
packer
(b)
packer
observation
packer
observation
packer
packer
Pumping
observation
observation
packer
packer
packer
packer
(d)
5
Introduction
Hydraulic tomography
• Data collection: Cross-hole pumping test
To obtain many independent pumping test data.
• Data integration: Numerical inversion
To integrate information of aquifer and estimate
parameters.
2011/3/10
The K tomogram
6
Motivation
PUMP
PUMP
OBS.
OBS.
PACKER
PACKER
10
10
Depth (m)
Depth (m)
5
0
5
0
0
5
10
15
20
0
5
10
X (m)
20
104
104
obs no.1
obs no.2
obs no.3
obs no.1
obs no.2
obs no.3
obs no.4
obs no.5
100
Pressure (mH2O)
100
Pressure H2O (m)
15
X (m)
96
96
92
92
88
2011/3/10 88
7
84
0
40
80
120
Time (s)
160
200
0
40
80
120
Time (s)
160
200
Motivation
2011/3/10
8
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
packer
The limit of equipment in field test.
10
Changing the packer position.
Druck 13m
8
Druck 12m
104
6
obs no.1
obs no.2
obs no.3
100
Pressure H2O (m)
Pressure (mH2O)
Druck 14m
Druck 11m
4
0
1000
2000
3000
96
92
Time (s)
The field pumping test data.
88
0
40
80
120
160
Time (s)
2011/3/10
10
200
Objective
To conduct numerical investigations to
assess how and to what degree the
accuracy of the field tests for estimation.
2011/3/10
11
Methodology
Generation of random field
A series of pumping events
Many packers, obtain data
simultaneously
Limited packers, obtain data
sequentially
Numerical model
2011/3/10
Comparison of the results
12
Generation of random field
K (m/s)
10
Depth (m)
1.60E-04
1.50E-04
1.40E-04
1.30E-04
1.20E-04
1.10E-04
1.00E-04
9.00E-05
8.00E-05
7.00E-05
6.00E-05
5.00E-05
5
0
OBS.
0
5
10
PUMP
15
20
X (m)
10
10
0
10
Depth (m)
Depth (m)
Depth (m)
5
5
0
0
5
10
Mean: 0.0001m/s
Variance: 0.1
Correlation length: 20x5m
15
20
5
0
0
5
OBS.
X (m)
10
15
20
0
5
X (m)
10
15
20
15
20
X (m)
PUMP
10
10
0
2011/3/10
0
5
Depth (m)
Depth (m)
Depth (m)
5
10
5
0
10
X (m)
15
20
5
0
0
5
10
X (m)
15
20
0
5
10
X (m)
13
A series of pumping events
104
104
obs no.1
obs no.2
obs no.3
100
Pressure H2O (m)
Pressure H2O (m)
100
96
96
92
92
88
88
0
40
obs no.1
obs no.2
obs no.3
80
120
160
200
0
200
Time (s)
obtain data simultaneously
2011/3/10
400
600
Time (s)
obtain data sequentially
Numerical model
14
Results & Discussion
K (m/s)
10
Depth (m)
1.60E-04
1.50E-04
1.40E-04
1.30E-04
1.20E-04
1.10E-04
1.00E-04
9.00E-05
8.00E-05
7.00E-05
6.00E-05
5.00E-05
5
0
5
K (m/s)
10
0.0002
Depth (m)
Correlation coefficient 0.867
Estimated K value
5
0.00016
0
0.00012
0
5
10
15
20
X (m)
K (m/s)
8E-005
10
4E-005
0
0
4E-005
8E-005
0.00012
6.00E-05
0
2011/3/10
0
5
Objective
K 15value
10
X (m)
20
20
K (m/s)
1.60E-04
1.50E-04
1.40E-04
1.30E-04
1.20E-04
1.10E-04
1.00E-04
9.00E-05
8.00E-05
7.00E-05
6.00E-05
5.00E-05
0.0002 10
0.00016
0.00012
Correlation coefficient 0.743
5
0
0
5
10
15
20
X (m)
8E-005
K (m/s)
10
4E-005
Depth (m)
Depth (m)
5
1.40E-04
1.35E-04
1.30E-04
1.25E-04
1.20E-04
1.15E-04
1.10E-04
1.05E-04
1.00E-04
9.50E-05
9.00E-05
8.50E-05
8.00E-05
7.50E-05
7.00E-05
0.00016 6.50E-05
0.0002
15
Depth (m)
1.60E-04
1.50E-04
1.40E-04
1.30E-04
1.20E-04
1.10E-04
1.00E-04
9.00E-05
8.00E-05
7.00E-05
6.00E-05
5.00E-05
10
X (m)
Estimated K value
0
5
0
0
4E-005
8E-005
0.00012
0.00016
0
0
5
Objective
K value
10
15
X (m)
20
15
1.20E-04
1.15E-04
1.10E-04
1.05E-04
1.00E-04
9.50E-05
9.00E-05
8.50E-05
8.00E-05
7.50E-05
0.0002
7.00E-05
6.50E-05
Conclusions
• To obtain the data in each depth by changing packer
position is practicable in field test.
• The field data we obtained are usability to estimate
the spatial distribution of hydraulic properties.
2011/3/10
16
Future work
• To conduct more numerical examples and
insight the application for practical problem.
the degree of heterogeneity
the observation intervals
the duration of sampling time
the extension of numerical boundaries
2011/3/10
17
Thanks for your attention~
2011/3/10
18