Standards 8, 10, 11 Classifying Solids Classifying Pyramids Surface Area of Pyramids Volume of a Right Pyramid Reviewing Perimeters PROBLEM 1 PROBLEM 2 PRESENTATION CREATED BY SIMON PEREZ.
Download ReportTranscript Standards 8, 10, 11 Classifying Solids Classifying Pyramids Surface Area of Pyramids Volume of a Right Pyramid Reviewing Perimeters PROBLEM 1 PROBLEM 2 PRESENTATION CREATED BY SIMON PEREZ.
Standards 8, 10, 11 Classifying Solids Classifying Pyramids Surface Area of Pyramids Volume of a Right Pyramid Reviewing Perimeters PROBLEM 1 PROBLEM 2 1 PRESENTATION CREATED BY SIMON PEREZ RHS. All rights reserved END SHOW Standard 8: Students know, derive, and solve problems involving perimeter, circumference, area, volume, lateral area, and surface area of common geometric figures. Estándar 8: Los estudiantes saben, derivan, y resuelven problemas involucrando perímetros, circunferencia, área, volumen, área lateral, y superficie de área de figuras geométricas comunes. Standard 10: Students compute areas of polygons including rectangles, scalene triangles, equilateral triangles, rhombi, parallelograms, and trapezoids. Estándar 10: Los estudiantes calculan áreas de polígonos incluyendo rectángulos, triángulos escalenos, triángulos equiláteros, rombos, paralelogramos, y trapezoides. Standard 11: Students determine how changes in dimensions affect the perimeter, area, and volume of common geomegtric figures and solids. Estándar 11: Los estudiantes determinan cambios en dimensiones que afectan perímetro, área, y volumen de figuras geométricas comunes y sólidos. 2 Standards 8, 10, 11 SOLIDS PYRAMID PRISM CYLINDER CONE SPHERE 3 TRIANGULAR RECTANGULAR PENTAGONAL PYRAMID PYRAMID PYRAMID Standards 8, 10, 11 HEXAGONAL OCTAGONAL PYRAMID PYRAMID 4 SURFACE AREA IN PYRAMIDS l l h x x x x x L= 1 2 xl L= 1 2 l x+x+x+x+x+x xl + 1 2 xl + The perimeter of the BASE is: P= x + x + x + x + x + x LATERAL AREA IS: L= 1 2 lP or x x x x Calculating Lateral Area: 1 2 l l l x x x + l l L= 1 2 Pl 1 2 xl + 1 2 xl + 1 2 xl TOTAL SURFACE AREA: T= 1 2 Pl + B P= perimeter of base B= Area of base polygon l= slant height 5 h= height Standards 8, 10, 11 Standards 8, 10, 11 VOLUME OF A PYRAMID: l h x V= 1 3 Bh where: B= Area of the base h= height 6 Standards 8, 10, 11 REVIEWING PERIMETERS X L X W W Y Y P= L+W +L +W P=L +L +W +W P = 2L + 2W X X X X L X P = Y +Y +X P= 2Y + X X X P = X +X +X +X +X +X +X +X P = 8X X X X P = 6X P = 5X P =4X 7 Standards 8, 10, 11 Find the lateral area and the surface area and volume of a right pyramid whose slant height is 9 in and whose height is 7 in. Its base is an equilateral triangle whose side is 10 in. Round your answers to the nearest tenth. LATERAL AREA: 9 in =l L= L= 7 in =h 1 2 1 2 ( 30 in )( 9 in ) = 25 3 in2 TOTAL SURFACE AREA: T= 2 10 in 10 in ( 10 ) 5 3 =5 5 3 L = 135 in 10 in 1 2 Pl L =(15 in )(9 in) Base perimeter: B= 1 2 Pl + B T = 135 in 2 + 25 3 Base Area: in2 T = 135 in2 + 43.3 in2 2 10 in T = 178.3 in 30° 5 3 P = 3(10 in) 60° P = 30 in 10 5 VOLUME: 1 V = 3 Bh 1 ( 25 3 V= 3 V 101 in3 in2 )( 7 in ) 8 Standards 8, 10, 11 Find the lateral area, the surface area and volume of a right pyramid with a height of 26 ft whose base is a regular hexagon with side of 6 ft. Round your answers to the nearest tenth. LATERAL AREA: Perimeter: 1 L = 2 Pl P = 6( 6 feet ) 1 L = P = 36 feet 2 ( 36 ft )( 26.5ft) l 1 L =(18ft )(26.5 ft) B = 2 Pa 26 ft =h L = 477 ft 2 B= 1 36 3 3 TOTAL SURFACE AREA: 2 1 = 18 3 3 T = 2 Pl + B 6 ft 3 3 2 B= 54 3 feet T = 477 ft 2 + 93.5 ft 2 Calculating base area: 2 2 B 93.5 feet T 570.5 ft we need to find the slant height, 60° using the Pythagorean Theorem: VOLUME: 1 60° 60° 2 2 Bh V = 2 l = 26 + ( 3 3 ) 3 2 2 2 1 ( 30° 2 l = 676 + 27 )( 26 ft ) 93.5 ft V= a 3 3 3 3 3 2 60° l = 703 (9)(3) 3 9 6 V 810. ft 27 l 26.5 ft 3