TC shaft motions virtual tool Research Progress Vehicle Turbocharger Nonlinear Rotordynamics Modeling and Experimental Validation Luis San Andrés Mast-Childs Tribology Professor Texas A&M University, Turbomachinery Laboratory January, 2011 Supported by Honeywell Turbocharger.
Download ReportTranscript TC shaft motions virtual tool Research Progress Vehicle Turbocharger Nonlinear Rotordynamics Modeling and Experimental Validation Luis San Andrés Mast-Childs Tribology Professor Texas A&M University, Turbomachinery Laboratory January, 2011 Supported by Honeywell Turbocharger.
TC shaft motions virtual tool Research Progress Vehicle Turbocharger Nonlinear Rotordynamics Modeling and Experimental Validation Luis San Andrés Mast-Childs Tribology Professor Texas A&M University, Turbomachinery Laboratory January, 2011 Supported by Honeywell Turbocharger Technologies (HTT) TC shaft motions virtual tool • Introduction to turbocharger rotordynamics • Experimental facilities • Development of predictive models (Virtual Tool) • Comparisons predictions vs test data • Closure Overview TC shaft motions virtual tool Oil Inlet TC Center Housing Anti-Rotating Pin Semi-Floating Bearing Shaft Compressor Wheel Turbine Wheel Turbochargers • Increase internal combustion (IC) engine power output by forcing more air into cylinder • Aid in producing smaller, more fuel-efficient engines with larger power outputs TC shaft motions virtual tool RBS: TC Rotor Bearing System(s) RBS Fully Floating Bearing RBS Semi Floating Bearing RBS Ball Bearing The driver: Increased IC engine performance & efficiency demands of robust & turbocharging solutions TC shaft motions virtual tool Bearing types Locking Pin Locking Pin Squeeze Film Floating Ring Ball Bearing Outer Film Inner Race Inner Film Shaft Outer Race Shaft Oil Feed Hole Ball-Bearing • Low shaft motion • Relatively expensive • Limited lifespan Semi-Floating Ring Bearing (SFRB) Floating Ring Bearing (FRB) • Economic • Longer life span • Prone to subsynchronous whirl TC shaft motions virtual tool Major challenges: extreme operating conditions • - Low Oil Viscosity, e.g. 0W30 or 0W20 • • • • • • - High Oil Temperature (up to 150°C) - Low HTHS (2.9); Low Oil Pressure (1 bar) - Increased Maximum Turbocharger Speed - Variable Geometry Turbo Technology & Assisted e-power start up - High Engine Vibration Level - More Stringent Noise Requirements Viscosity Plot 100 0W-30 Castrol SLX Need predictive too to reduce costly engine test stand qualification Viscosity (cS) 0W-30 Castrol SLX Longlife 10 1 0 10 20 30 40 50 60 70 80 90 Water 100 110 Oil Temperature (deg C) 120 130 140 150 160 Literature Andres and students TC shaft Review: motionsSan virtual tool • TC linear and nonlinear rotordynamic codes – GUI based – including engine induced excitations 2004 IMEchE J. Eng. Tribology 2005 ASME J. Vibrations and Acoustics ASME DETC 2003/VIB-48418 ASME DETC 2003/VIB-48419 2007 ASME J. Eng. Gas Turbines Power ASME GT 2006-90873 2007 ASME J. Eng. Gas Turbines Power ASME GT 2005-68177 2007 ASME J. Tribology IJTC 2006-12001 2007 ASME DETC2007-34136 2010 ASME J. Eng. Gas Turbines Power ASME GT2009-59108 2010 IFToMM Korea Predictive tool saves time and money • Realistic bearing models: thermohydrodynamic • Novel methods to estimate imbalance distribution and shaft temperatures • NL analysis for frequency jumps and noise reduction • Measured ring speeds with fiber optic sensors TC testing: expensive and time consuming Benchmarked against test data Predictive tool for shaft motion benchmarked by test data TC shaft Main Tasks motions – KEYvirtual OBJECTIVES tool 1. Measure shaft motion response in dedicated PV and CV turbocharger test rigs (cold & hot gas) 2. Development of software for prediction of (S) floating ring bearing static and dynamic forced response 3. Integration of FRB and SFRB tools into nonlinear rotordynamics code – VIRTUAL LABORATOY 4. Comparisons of test data to predictions: Validate predictive tool Test rigs XLBRG XLTRC2 Tools TC shaft motions virtual tool TC shaft motions virtual tool Test rigs for TC rotordynamic performance evaluation Turbine Bearing Oil Supply Hole Turbine wheel Oil supply Compressor Bearing Oil Supply Hole Compressor wheel SFRB Anti-Rotation Pin Hole KEY OBJECTIVE # 1 TC shaft motions virtual tool Experiments to measure the rotordynamic response of a turbocharger supported on semi-floating ring bearings and fully floating ring bearings Test Rigs Construct various test rigs, develop measurement methods, strategy to sensor selection and measurement locations, acquire data, processing tools, etc KEY OBJECTIVE # 1 TC shaft motions virtual tool • Infrared tachometer • RAM BN sensors for shaft motion •Fiber optics for ring motion detection TAMU TC test rig 2002 TC shaft motions virtual tool • Infrared tachometer • KAMAN sensors for shaft displacement at compressor side • Accelerometers for casing motion •240 krpm max (4 KHz) TAMU TC test rig 2004 TC shaft motions virtual tool • KAMAN sensors for shaft displacement at compressor side • connection to shakers •300 krpm max (5 KHz) TC gas stand test rig – HTT (France) 2008 TC shaft motions virtual tool accelerations are collected with three-axis accelerometers. Engine Compressor Housing Proximity Probes (X, Y) 3-axes accelerometers: engine isolated atop a large shaker table Air Inlet Fig. 4 Turbocharger Engine Test Facility Stand accelerometers Accelerometers TC engine stand test rig–HTT (Shanghai) 2008 TC shaft motions virtual tool N ose – d isp lacem en t m easu rem en t p lan e co m p resso r inche s S e m i-flo ating ring b earin g A nt-ro tatio n p in turb ine Shaft speed 25 - 240 krpm, Oil 5W-30, 150 C inlet temperature, feed pressure 1- 4 bar Measure rotordynamic response of PV turbocharger TC shaft motions virtual tool T ES T D A T A - C o m p resso r E nd TLV TEST DATA 1X Dominance of sub synchronous motions at all speeds 243 krpm T LV T ES T D A T A - com pr ess or end 29 krpm A m plitude (m m ) Se le c te d ba nd w ith Se le c te d ba nd w ith 0.06 0 .4 A m pli tud e F requen c y rati o 0 .6 0.03 0 .2 0 0 50 100 150 kR P M 200 250 0 0 50 100 150 200 kR P M SU B S Y N C SY N C H RO N O U S waterfall compressor end shaft motions whirl frequency ratio and amplitudes (mm) of vibration. Oil supply pressure = 1 bar, T=150 C 250 TC shaft motions virtual tool TAMU TEST DATA TC shaft motions virtual tool Purpose of analysis is to reduce risk for this type of failure TAMU TEST DATA TC shaft motions virtual tool Compressor Waterfalls - X Direction at Proximitor CX max 589.28 Waterfall - X - COMPRESSOR microns 2000 TAMU TEST DATA 1X A m plitud e 1500 109 maxkRPM 1000 Compressor Spe cifie d WFR Analysis - X Dire ction at Proximitor 500 1 ratio C - X motions 600 0 1000 0 1000 2000 3000 minkRPM 15.4 4000 R M S a m p lit ud e s Frequency [Hz ] W a te rfa ll o f s h aft m o tio n a t c o m p re s s o r e n d (X -d ire c tio n400 ) ve rs u s ro to r s p e e d . F a ilu re o f G T 1 5 4 4 Z TC failure 200 0 0 (cold air operation) 10 - 110 krpm : Oil ISO VG 10 20 40 60 rot or spee d ( kRP M) Comp Overall Comp Peak Comp at WFR s ynchronous 80 100 120 TC shaft motions virtual tool TC shaft motions virtual tool TC fluid film bearings Oil supply Turbine side bearing ½ moon groove Compressor side bearing oil supply holes Turbine side bearing oil supply holes Oil supply Turbine bearing outer film Center housing SFRB Anti-rotation pin Turbine Turbine Shaft Shaft Turbine bearing Turbine bearing inner film inner film KEY OBJECTIVE # 2 Comp bearing outer film Comp Comp Comp bearing Comp bearing inner film inner film TC shaft motions virtual tool Development of software for prediction of (semi) floating ring bearing (S-FRB) static and dynamic forced response XLBRG Tool EXCEL & Fortran FEM code for prediction of FRBs and SFRBs forced response (static and dynamic) Finite length bearing model with global thermal balance and shear thinning effects Interface to XLTRC2 software for rotordynamics analysis KEY OBJECTIVE # 2 Models for fluidvirtual films tool TC shaft motions Reynolds Equations Outer film pressure, Po Outer oil film Y ho R R Po e X R eYR e X R sin cos eYR 2 2 12 o Ring Shaft X Film thickness: ho c o e X cos( ) eY sin( ) R R Inner film pressure, Pi Housing Inner oil film h i Pi e X eY cos eY e X sin 2 2 12 i Film thickness: h c e cos( ) e sin( ) i i X Y e X e X e X ; eY eY eY ; J R J R - Balance of drag torques from outer and inner oil films - Thermal energy transport (heat conduction & convection) 2004 IMEchE J. Eng. Tribology J R 2 TC Lumped shaft motions Parameter virtual Thermal tool Model Oil energy increase ~ Heat flow bearing Sp Heat x Mass flow x Temperature Difference Outer film Temp Rise Outer film Inner film Inner film Temp Rise Floating ring 2004 IMEchE J. Eng. Tribology Mechanical power by fluid shearing P ~ Torque x Rot Speed shaft Energy convected to solids and conducted through shaft, ring and bearing TCBRG XL shaft ® INPUT motions virtual tool Geometry (cold) – L,D,C Fluid Type (commercial oil) Material properties Operation (speed and load) Example: Turbine side bearing TC shaft motions tool XL BRG®: typesvirtual of bearings Oil inlet, Ps, TS Oil inlet, Ps, TS ring Halfmoon groove ring shaft shaft Straight feed hole Oil supply in bearing Figures NOT to scale Types of oil supply Oil supply – outboard side TCBRG XL shaft ® INPUT motions virtual tool (Semi & Fully) Floating Bearing Ring • Actual geometry (length, diameter, clearance) of inner and outer films, holes size and distribution • Supply conditions: temperature & pressure • Lubricant viscosity varies with temperature and shear rate (commercial oil) • Side hydrostatic load due to feed pressure • Temperature of casing • Temperature of rotor at turbine & compressor sides derived from semi-empirical model: temperature defect model XLBRG® ETHD fluid film bearing model predicts operating clearance and oil viscosity (inner and outer films) and eccentricities (static and dynamic) as a function of shaft & ring speeds and applied (static & dynamic) loads. TCBRG XL shaft ® Output motions virtual tool ASME GT2006-90873 44 Oil Inlet Pressure = 2.06 bar Oil Inlet Temperature = 38°C Lubricant Exit Temp (C) 43 42 Measured Exit Temp Predicted Exit Temp 41 5 oC 40 Predicted Predictions 39 Test Test data data 38 37 0 10000 20000 30000 40000 50000 60000 70000 80000 Turbocharger Speed (rpm) Fluid Exit Temperature – Prediction vs. Test Data TCBRG XL shaft ® Output motions virtual tool (S)FRB Predictions : Maximum temperature (C) 100% Engine Load - Inner Film 50% Engine Load - Inner Film 25% Engine Load - Inner Film Lubricant Supply Temperature Peak film temperatures 100% Engine Load - Outer Film 50% Engine Load - Outer Film 25% Engine Load - Outer Film 170 Inner film 160 150 Outer film 140 130 Supply temperature 120 110 100 90 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 Shaft speed (rpm) ASME GT 2009-59108 Increase in power losses (with speed) leads to raise in inner film & ring temperatures. No effect of engine load TCBRG XL shaft ® Output motions virtual tool (S)FRB Predictions : 100% Engine Load - Inner Film 50% Engine Load - Inner Film 25% Engine Load - Inner Film Oil effective viscosity 100% Engine Load - Outer Film 50% Engine Load - Outer Film 25% Engine Load - Outer Film Lubricant type: SAE 15W - 40 Effective viscosity (cP) 7 6 outer film 5 4 Inner film 3 2 1 Supply viscosity: 8.4 cP 0 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 Shaft speed (rpm) LUB: SAE 15W-40 ASME GT 2009-59108 Higher film temperatures determine lower lubricant viscosities. Operation parameters independent of engine load TCBRG XL shaft ® Output motions virtual tool (S)FRB Predictions : 100% Engine Load - Inner Film 50% Engine Load - Inner Film 25% Engine Load - Inner Film 1.20 Film clearances 100% Engine Load - Outer Film 50% Engine Load - Outer Film 25% Engine Load - Outer Film Film clearance Cold clearance 1.15 Inner film 1.10 1.05 nominal clearance 1.00 0.95 0.90 outer film 0.85 0.80 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 Shaft speed (rpm) Thermal growth relative to nominal inner or outer cold radial clearance ASME GT 2009-59108 Inner film clearance grows and outer film clearance decreases – RING grows more than SHAFT and less than CASING. Material parameters are important TC shaft motions virtual tool TC shaft motions virtual tool TC rotordynamics linear and nonlinear KEY OBJECTIVE # 3 TC shaft motions virtual tool Integration of FRB and SFRB codes into nonlinear rotordynamics program XLTRC² Rotordynamics Virtual Tool • Beam Finite-Element Formulation • Real Component-Mode Synthesis (CMS) model • Multi-line Rotor/Housing Modeling Capability • Linear and transient response nonlinear analyses • Fully integrated with an extensive suite of support codes • User-Friendly GUIs for rapid model development and report generation General EOMs C q G q K q Q (t) Mq KEY OBJECTIVE # 3 TC shaft rotordynamics motions virtualcode tool XLTRC² 1 • Timoshenko-beam, FE-formulation • Calculates real modes • Reduces model dimensionality by using a limited number of modes m1 m2 f1(t) Component-Mode Synthesis (CMS) m3 m4 f4(t) TC shaft Rotor structural motionsFE virtual models tool T C 2 5 T u rb o c h a rg e r (F R B S = S h a fts 2 & 3 ) c o m p re s s o r (le ft s id e ) - tu rb in e (rig h t s id e ) 0 .0 4 0 .0 3 20 60 15 0 .0 2 65 S h a ft2S h a ft2 Compressor thrust disk shaft turbine Typical TC rotor hardware S ha f t R a dius , m e t e rs 73 S h a ft3S h a ft3 75 76 78 25 0 .0 1 S h a ft1 55 5 10 70 72 S h a ft1 30 35 40 45 50 1 0 -0 .0 1 FRB FRB 2 n d s h a ft 3 rd s h a ft -0 .0 2 -0 .0 3 -0 .0 4 0 0 .0 2 0 .0 4 0 .0 6 0 .0 8 0 .1 0 .1 2 A x ia l L o c a tio n , m e te rs Typical FE rotor structure model T 2 tu rb och arger an d F R B s m od eled as th ree -sh aft roto r. F R B s as sh afts 2 & 3. TC shaft rotor Validate motions model virtual tool Rotor finite element model: Validate rotor model with measurements of free-fee modes (room Temp) Thrust Collar 0.03 Shaft Radius [m] 0.02 Shaft Motion Target 2 shaft model Unbalance Planes Feed Pressure 0.01 Rotor: 6Y gram SFRB: Y gram 0 -0.01 Thrust Collar Semi-Floating Ring Bearing Compressor Wheel Bearing Compressor -0.02 CG Rotor Turbine Wheel Bearing Turbine -0.03 0 0.02 0.04 0.06 0.08 Axial Location [m] Compressor SFRB 0.1 Turbine 0.12 Static weight load distribution Compressor Side: Z Turbine Side: 5Z Shaft Radius, me 0.01 TC shaft rotor Validate motions model virtual tool 0 -0.01 Compressor End -0.02 Free-free natural frequency & shapes -0.03 Turbine End -0.04 0 0.02 0.04 0.06 0.08 0.1 0.12 Axial Location, meters 0.04 Predicted (Freq = 1.823 kHz) 0.02 0.01 0 -0.01 Compressor End -0.02 -0.03 Turbine End -0.04 Measured (Freq = 4.938 kHz) Second mode Predicted (Freq = 4.559 kHz) 0.03 Shaft Radius, meters 0.03 Shaft Radius, meters 0.04 Measured (Freq = 1.799 kHz) First mode 0.02 0.01 0 -0.01 measured prediction -0.02 -0.03 -0.04 0 0.02 0.04 0.06 0.08 0.1 0.12 0 0.02 0.04 Axial Location, meters 0.04 0.08 0.1 0.12 Axial Location, meters Measured (Freq = 4.938 kHz) Second mode measured Predicted (Freq = 4.559 kHz) 0.03 Shaft Radius, meters 0.06 Predicted % diff KHz KHz - First 1.799 1.823 1.3 Second 4.938 4.559 7.7 0.02 0.01 0 -0.01 measured Measured andprediction predicted free-free natural frequencies and mode shapes agree: rotor model validation -0.02 -0.03 -0.04 0 0.02 0.04 0.06 0.08 Axial Location, meters 0.1 0.12 TC shaft & motions tool XLTRC² XLBRG virtual interfacing Synchronous response Eigenvalue analysis Linear Model XLTRC2 Synchronous response Subsynchronous motions Limit Cycle Orbits Non- Linear Model Rotordynamic Stability Map XLBRG 0.40 Compressor end 1X Compressor Nose (stn 4) 1.2 0.35 0.09 9.0 1.00 0.50 FRB GeometryDamped and SYNCHRONOUS RESPONSE 1 Natural Frequency Rotordynamic Map 29 krpm Rotordynam ic Response Plot Compressor End TOTAL MOTION 0.30 0.45 Operating Conditions (1X) Y - Direction 0.06 Synchronous Damping Ratio 206 kPa - 38 C Nominal inlet temperature 8.0 8.00 A 0.00 0 -0.01 L3 Inner film 200 0 -0.2 0.004 0.10 1.000 HG 0. 0.05 0.995 -0.02 0.02 0.003 Compressor Temperature raise (C) 15 20 25 2.0 6.60 50000. 1.0 6.40 0.0 6.20 100000. FRB FRB 0.990 6.00 0 0 150000. 1000 10000 20000 2000 Thermal growth relative to Ci+Co 0 40000 0 -0.06 400 600 0.00 Horz Amp Major Amp 150000. Horz Amp Vert40000 Amp Excitation = 1x 50000 CG rotor Shaft speed (rpm) Turbine 60000 30000 200000. 3000 40000 400050000 5000 Excitation = 1x Shaft speed Frequency (Hz) (RPM) 200000. Vert Amp 60000 70000 80000 70000 6000 80000 Outer clearance 0.12 0.14 0.16 0 10000 20000 30000 40000 50000 60000 200000 70000 80000 120000 160000 120000 160000 200000200000 50000 100000 150000 Shaft Speed (rpm) Shaft speed (RPM) shaft (rpm)Speed, 1000 1200 14000.10 rpm 1600 1800 0.152000 Rotor 0.05speed 0.20 40000 80000 800 M ajor Amp Turb FRB Outer film Rotor Speed, rpm 0.06 0.08 0.9850.1 0.04 0 0.00 6.80 Successful integration of FRB tools into rotordynamics Rotor Speed, rpm program 0206 kPa -10000 20000 30000 38 C Nominal inlet temperature NONLINEAR RESULTS 0.00 100000. Effective viscosity (Cpoise) 0 0.005 0.03 0.002 0.01 50000. -0.04 0.001 0.02 0 0.04 0.006 Amplitude (-) Inner and outer film clearance change LG2 L2 Response 0-pk Amplitude (0-pk) Shaft Radius L1 Nonlinear pred Nonlinear Sync (1X) Inner lubricant film Comp FRB inner film °C data TURBINE NOSE Test 0.8 Compressor End 7.0 7.80 orbit CompPredicted FRB outer film °C size Linear (1x) L: Compressor , R:Sync Turbine Rotordynamic Deflected Shape Plot Outer lubricant film Y - Direction 0.07 imbalance planes STATION 46inner 1.015 Turb FRB film °C TEST DATA LINEAR0.25 RESULTS 7.60 6.0kPa - 38 C Nominal 206 inlet temperature Test data Turb FRB outer film °C 1X 0.6 L: Compressor , R: Turbine Test data Inner clearances 7.84 Cpoise 0.01 Ci/Co: 35.5/97 microns 0.04 Turbocharger + FRB model 7.40 0.06 Nominal Viscosity@38 oC 5.0 Deflected Shape at0.20 35000 rpm 1.010 Comp FRB inner film 0.009 0.4 5 7.20 Comp FRB outer film 1X - synchronous 4.0 Comp FRB inner film 0.008 0.05 Shaft1 Turb FRB inner film 35 0.02 Shaft2 Shaft2 Shaft3 Shaft3 Comp FRB Outer film 7.00 1.005 0.2 0.15 39 InnerOuter Shaft1 Turb FRB outer44 film lubricant lubricant film film 40 45 49 10 30 3.0 0.0071 Turb FRB inner film Amplitude (-) XLHYPAD 20000.40 0.80 1800 16000.35 1400 0.030.60 0.30 1200 Outer0.025 film 1000 0.25 800 0.02 0.40 6000.20 0.015 400 2000.15 0.01 0.20 0 0.005 L0.10 G1 0. 0 0.05 0.00 0 -0.005 Amplitude (-) Response Amplitude Natural Frequency, Hz 0.08 80000 0.25 Shaft speed (rpm) Axial Location Virtual Laboratory Axial Location XLTRC² TC predictions: NL shaft motions typical virtualresponses tool 0.1 0.08 0.06 0.05 0.04 0.02 0 0 -0.02 -0.05 -0.04 -0.06 -0.1 -0.08 -0.1 -0.15 0 1 2 18 krpm 3 4 5 6 7 -0.12 0 1 240 krpm 240 krpm 2 3 4 5 6 7 18 krpm Predictions of TC shaft motion response – displacement versus time: rotor acceleration & deceleration TC predictions: NL shaft motions analyses virtual tool in frequency domain Important: Massive amounts of time domain data rarely show any value (do not add knowledge nor establish firm design rules not even rules of thumb) Analysis stresses on frequency domain analysis to build waterfalls, find total motion and synchronous motions, filtering of major whirl frequencies to determine effect on rotor elastic motions, calculation of forces transmitted to casing and rotor. TC shaft motions virtual tool TC shaft motions virtual tool Test data vs. predictions Validations If successful, a) Ready tool for PRODUCTION b) Demonstrate savings c) Install tool at all TC core engineering centers KEY OBJECTIVE # 4 Variations manufactured TC shaft in motions virtualRING tooldimensions Outer film ODmax ODmin Comin ID casing Outer film Comax Cimin Cimax IDmin Inner film RING IDmax Inner film ID Costly procedure to qualify TCs Four corners clearance limits OD OD shaft Costly TCmotions qualification TC shaft virtualcertification tool Outer film ODmax ID casing Outer film Inner film ODmin IDmin RING IDmax Inner film ID Past: NHS tests at 4 corners OD OD shaft Savings TC qualification certification TC shaft in motions virtual tool Determined from Virtual Tool Outer film ODmax ID casing Outer film Inner film ODmin IDmin RING IDmax Inner film ID Current: One (or no) NHS test OD OD shaft TC shaft motions virtual tool Validation: shaft motion for PV TC TC shaft motions virtual tool TC rotor & bearing system Compressor Turbine Spacer 2 shaft model Example: RBS with Semi Floating Bearing 126.44 mm shaft speed 18 - 240 krpm Oil 5W-30, 100 C inlet temperature, feed pressure 2,4 bar u C ASME DETC2007-34136 T TC shaft motions- virtual tool ODmax-IDmax compare Measured Steady-State Waterfall / Y Displacement RBS with ODmaxIDmax / Oil Texaco-Havoline Energy 5W30, 150°C, 4bar 0.07 Subsynchronous Components Synchronous Component 0.06 Motion Amplitude 0.05 0.04 0.03 0.02 Predicted at compressor end 0.01 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 ODmaxIDmax, Oil 5W30, Inlet Temp. = 150°C, Inlet Pressure = 4bar Frequency (Hz) Measured at compressor end Normalized Nonlinear Response 0.07 Synchronous 0.06 4062 Hz 0.05 0.04 0.03 0.02 0.01 0 0 WATERFALLs of SHAFT MOTION ASME DETC2007-34136 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 Frequency (Hz) TC shaft motions- virtual tool ODmax-IDmax compare ODmaxIDmax Oil 5W30, Inlet Temp. = 150°C, Inlet Pressure = 4bar Motion Amplitude [-] 70 Total motion & 1X motion Test: Total Motion Predicted: Total Test: Synchronous Predicted: Synchronous 60 50 40 30 20 10 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 Turbocharger Speed (Hz) Whirl frequency Subsynchronous Freq. (Hz) ODmaxIDmax Oil 5W30, Inlet Temp. = 150°C, Inlet P bar 1500 1350 Test 1X Prediction 1200 1050 900 750 600 450 300 150 0 0 500 1000 1500 2000 2500 3000 Turbocharger Speed (Hz) ASME DETC2007-34136 3500 4000 4500 TC shaft motions- virtual tool ODmin-IDmax compare 900 Mode 1 Mode 2 Mode 3 Nonlinear Prediction Test data Natural Frequency (Hz) 800 700 Mode 3 Cylindrical - Deformed Mode Shape Mode 2 Compressor - End Ring Mode Mode 1 Conical Mode Shape 1X 600 500 400 300 200 100 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 Turbocharger Speed (Hz) Nonlinear predictions reproduce test data – Linear eigenvalue analysis is limited in accuracy ASME DETC2007-34136 TC shaft motions virtual tool TC shaft motions virtual tool Validation: shaft motion for CV TC TC shaft motions virtual tool TC rotor & bearing system 3 shaft model shaft speeds 30 - 180 krpm Oil 0W-30, 92 C inlet temperature, feed pressure 4 bar TC shaft motions virtual tool Validation CV TC 4 bar TEST DA TA - DISPLACEMENT Ymax 0.038 0.08 A m plitude [m m ] TESTS Test data shows broad bands in sub synchronous frequency regions. Whirl motions persist at all speeds. 0.053 RPM 0.027 N 1.843 10 5 cas e 184.3 krpm RPM 0 29.7 0 1000 2000 3000 4000 5000 2.976 10 4 0 krpm 6000 Frequency [Hz] Y-Compre ssor end 0.08 Prediction Predictions show sub synchronous frequencies to 184 krpm. More severe than test data at low shaft speeds. A m plitude [m m ] 0.06 0.04 184.3 krpm * 0.02 29.76 krpm 0 0 1000 2000 3000 Frequency [Hz] TC – Waterfalls: Test data and Nonlinear predictions 4000 5000 6000 TC shaft motions virtual tool 0 .0 3 Y - D ire c tio n 4 b a r; va ria b le te m p C o m p re s s o r N o s e (s tn 4 ) Nonlinear response predictions (1X 0 .0 2 5 N o n lin e a r S yn c (1 X ) A m p litu d e (m m 0 -p k ) L in e a r S yn c (1 x) T e st d a ta 0 .0 2 8% of physical limit filtered) 0 .0 1 5 compares best with test data at low shaft speeds TESTS 0 .0 1 0 .0 0 5 Nonlinear response (1X filtered) 0 0 25000 50000 75000 100000 125000 150000 175000 200000 S h a ft S p e e d (rp m ) Imbalance response (linear and nonlinear) vs test data TC shaft motions virtual tool G T 2560 0 .5 0 0 4 b a r; va ria b le te m p 0 .5 1 7 m m (p k -p k ) p h ys ic a l lim it C o m p re s s o r N o s e (s tn 4 ) Good correlation with test data, in particular at mid shaft speed range (70-130 kprm). A m p litu d e (m m ) 0 .4 0 0 P re d icte d O rb it S ize 0 .3 0 0 T e st d a ta 60 % of physical limit TESTS 0 .2 0 0 0 .1 0 0 Nonlinear response (orbit analysis) 0 .0 0 0 0 25000 50000 75000 100000 125000 150000 175000 200000 s h a ft s p e e d (rp m ) Total Motion: test data and predictions Test data & predictions show persistent sub sync motions TC shaft motions virtual tool Validation: engine induced excitations ASME GT 2009-59108 TC IC engine shaft motions inducedvirtual excitations tool Operating conditions from test data: – TC speed ranges from 48 krpm – 158 krpm – Engine speed ranges from 1,000 rpm – 3,600 rpm – 25%, 50%, 100% of full engine load – Nominal oil feed pressure & temperature: 2 bar, 100°C accelerations are collected with three-axis accelerometers. Engine Engine Compressor Housing Compressor Housing Proximity Probes Proximity Probes (X, Y) (X, Y) TC Engine Test Facility Stand Air Inlet Air Inlet ASME GT 2009-59108 TC IC engine shaft motions inducedvirtual excitations tool TC housing acceleration analysis 100% engine load Center Housing m/s2 ~570 Hz A m plitu de 300 2, 4, and 6 times engine (e) main frequency contribute significantly 200 100 0 0 2 4 6 8 10 12 14 16 18 20 Order of engine frequency Combined manifold & TC system natural frequencies ~300 Hz Comp. Housing m/s2 A m plitu de 300 3600 rpm 200 100 0 0 2 4 6 8 10 12 Order of engine frequency ASME GT 2009-59108 14 16 18 20 1000 rpm 1e order frequency does not appear TC IC engine shaft motions inducedvirtual excitations tool Housing accelerations into model Connection to engine mount Accelerometer Compressor housing Center Housing Specified housing motion due to engine Semi Floating Ring Bearing Assembly Eddy current sensor Compressor Turbine Shaft Axial Bearing Assembly ASME GT 2009-59108 TC IC engine shaft motions inducedvirtual excitations tool Waterfalls of shaft motion at compressor end 100% engine load 0.25 0.25 Test Data Predictions with Housing Acceleration 0.2 TC synchronous response 0.15 3.6 krpm 0.1 0.05 Amplitude 0-pk (-) Amplitude 0-pk (-) 0.2 TC synchronous response 0.15 0.05 1.0 krpm 0 0 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 Frequency (Hz) 0.25 Housing accelerations induce broad range, low frequency whirl motions Predictions without Housing Acceleration 0.2 TC synchronous response 0.15 1.0 krpm 0 0 Frequency (Hz) Amplitude 0-pk (-) 3.6 krpm 0.1 3600 rpm 3.6 krpm 0.1 0.05 Test data shows broad frequency response at low frequencies (engine speeds) 1.0 krpm 0 0 500 1000 1500 2000 2500 Frequency (Hz) 3000 3500 4000 1000 rpm ASME GT 2009-59108 IC engine induced excitations TC shaft motions virtual tool Total shaft motion at compressor end (amplitude) 100% engine load 0.50 Test Data pk-pk (-) Amplitude Amplitude pk-pk (-) 0.45 Nonlinear Predictions 0.40 Good correlation with test data for all shaft speeds Test data 0.35 0.30 0.25 0.20 NL pred. 0.15 0.10 0.05 0.00 0 500 1000 1500 2000 2500 Shaft speed Rotor speed(rpm) (RPM) ASME GT 2009-59108 3000 3500 4000 IC engine induced excitations TC shaft motions virtual tool order engine frequencies, most likely due to the engine Subsynchronous freq. vs. IC engine speed firing (Hz) frequency Subsynchronous Frequency [Hz] 600 prediction Nonlinear Predictions measured 12e 11e 10e Test Data 550 500 9e 8e Test 450 7e TC shaft selfexcited freqs. 400 6e 350 300 5e 250 4e 200 3e 150 100 2e 50 NL1e 0 0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000 Engine speed (rpm) Engine speed (RPM) Subsynch. freqs. are multiples of IC engine frequency Higher engine order frequencies not predicted 100% engine load and measured subsynchronous whirl Fig. 15. Predicted frequencies TC manifold nat freq. ASME GT 2009-59108 TC shaft motions virtual tool Validation: noise generation & frequency jump IFToMM 2010 TC shaft motions Frequency jumps: test virtual datatool center housing acceleration (test data) Jump from 1st to 2nd whirl frequency increases noise Mode 2: Cylindrical 2 22 Synchronous: 1X Rotor Speed Shaft accelerates Top speed ~180 krpm (3 kHz) Oil inlet temp= 30C Oil inlet pressure = 4 bar Jump bifurcation =2 1+2 Bifurcation speed ~105 krpm (1.75 kHz) 1 Mode 1: Conical 21 Frequency (Hz) 31 Objective: study bearing parameters and rotor characteristics affecting frequency jump TC predictions: NL shaft motions frequency virtual tool jumps Horizontal direction ω2 ω1 0.2 ω1 1X Contour map 0.1 Amplitude (-) 0.3 Waterfalls of shaft motion (compressor end) 30 krpm Jump at 182krpm (ramp down) 1X 0 10 Fre 00 20 00 qu en 30 cy (Hz 00 4 000 ) 105 rpm) ed (k 240 30 105 e r Sp Roto 30 Jump at 182 krpm (ramp down) Max speed, 240 krpm Jump at 165 krpm (ramp up) M_X 177 Jump at 165 krpm (ramp up) 1X 30 krpm 1000 IFToMM 2010 WFM_Y WFM_Y ω1 ω2 2000 3000 Frequency (Hz) 68 4000 TC predictions: NL shaft motions frequency virtual tool jumps Rotor subsynchronous frequency (and amplitude) versus shaft speed (compressor end) @ Ωb= 165krpm (2.75kHz) 5ω1 ~ 4ω2 3ω1 + ω2~ Ωb 1400 ω1_up Rotor accelerates ω2_up 0.04 C 800 T 0.02 600 ω2 = 815 Hz Ωb= 165krpm 0 0.02 400 0.04 0.05 C ω1_down ω2_down 100 150 Shaft Speed (krpm) Compressor end 200 0.15 T ω1 = 654 Hz Ωb= 165krpm 250 0.02 0.04 0.05 0 0.05 0.1 0.15 @ Ωb=182krpm (~3kHz) 5ω1 ~ 4ω2 2ω1 + 2ω2~ Ωb 182 krpm JUMP Y-direction 1000 0.1 0 50 1200 0.05 0.02 UP 1400 Conical rotor filtered whirling mode 0 0.04 0 Cylindrical bending rotor filtered whirling mode 800 0.02 C T 0.01 600 ω2 = 845 Hz Ωb= 182krpm 0 400 0.01 0.02 0.05 0.1 (-) Frequency (Hz) Cylindrical bending rotor filtered whirling mode Y-direction 0 IFToMM 2010 165 krpm Compressor end 1000 200 Rotor decelerates JUMP 0.10.1 (-) (-) Frequency (Hz) 1200 200 0 0.04 DOWN 0 0 0.02 50 100 150 Shaft Speed (krpm) 200 250 0 0.02 Conical rotor filtered whirling mode C 0.05 0.1 0.15 T ω1 = 674 Hz Ωb= 182krpm TC predictions: NL shaft motions noise virtual tool 0.08 0.15 0.06 0.1 0.04 0.05 0.02 0 0 -0.02 -0.05 -0.04 -0.1 -0.06 -0.15 -0.08 -0.1 -0.2 0 1 2 18 krpm 3 4 5 6 7 240 krpm 0 1 18 krpm 2 3 4 5 6 240 krpm Predictions of TC shaft motion response – displacement versus time: rotor acceleration IFToMM 2010 7 TC shaft motions virtual tool TC shaft motions virtual tool 1. Tests SHOW dominance of SUB SYNCHRONOUS MOTIONS on rotordynamic response of PV TCs 2. TOOL for prediction of fully floating and semi- TAMU & HTT XLBRG floating ring bearing (SFRB) static and dynamic forced response is ACCURATE XLTRC2 3. VIRTUAL TOOL: Seamless Integration of FRB and SFRB codes into nonlinear rotordynamics program Substantial savings in product development/prototype testing Major benefit to industry Closure Test vs. predictions TC shaft motions virtual tool TAMU-HTT VIRTUAL TOOL for Turbocharger NL Shaft Motion Predictions XLTRC2® & XLBRG® have a demonstrated 70% cycle time reduction in the development of new CV TCs. Since 2006, code aids to developing PV TCs with savings up to $150k/year in qualification test time Predicted shaft motion Measured shaft motion Measured Steady-State Waterfall / Y Displacement RBS with ODminIDmax / Oil Texaco-Havoile Energy 5W30, 150°C, 4bar Predicted Steady-State Waterfall / Y Displacement RBS with ODminIDmax / Oil Texaco-Havoline Energy 5W30, 150°C, 4bar 0.07 0.07 Subsynchronous Components Subsynchronous Components Synchronous Component Synchronous Component 0.06 Normalized Nonlinear Response 0.06 Motion Amplitude 0.05 0.04 0.03 0.02 0.01 0.05 0.04 0.03 0.02 0.01 0 0 500 1000 1500 2000 2500 3000 3500 Frequency (Hz) ASME DETC2007-34136 4000 4500 5000 5500 6000 0 0 500 1000 1500 2000 2500 3000 3500 Frequency (Hz) 4000 4500 5000 5500 6000 TC shaft motions virtual tool HTT 2011-12 Project Complete thermal analysis of FRBs and S-FRBs for TCs • Prediction of thermal fields in entire TC system • Quantification of power losses and prediction of bearing seizure & oil coking • Analysis of frequency jump phenomena and multiple internal and combined resonances •$ 350 k (2 years) TC shaft motions virtual tool Oil-less turbochargers Driver: HT ceramic ICEs with improved reliability Advantages: + TH efficiency, HT limited by materials only, less contamination Disadvantages: + cost, more parts & balancing Unknown performance for large dynamic loads & road conditions Unknown thermal soaking Cheap solution sought: metal wire mesh bearings! TC shaft motions virtual tool Other forces and issues Thrust bearings: Tools available Issues: thermal & coupling to lateral RD in PV TCs Aerodynamic forces: Tools available Issue: At + high speeds, turbine develops a destabilizing force Piston ring seal: Unknown forces. Issue: oil coking locks ring CV TC PV TC TC shaft motions virtual Aerodynamic force in tool turbines As rotor whirls, regions of low clearance improve efficiency of blades and generate a force (from torque) Y X Low clearance, High blade efficiency Increased turbine force X rotation Large clearance, low blade efficiency Reduced turbine force T: torque D: tip diameter H: blade height : efficiency parameter (empirical) =1-1.5 Tip Clearance Excitation Force Whirl direction Thomas-Alford Force Model F X K XY Y , FY K YX X K xy K yx T DH Review TC shaft motions virtual tool Acknowledgments Honeywell Turbocharging Technologies (2002-2011) TAMU Turbomachinery Laboratory Turbomachinery Research Consortium (XLTRC2®) Learn more at Luis San Andres http://rotorlab.tamu.edu © 2011 TC shaft motions virtual tool San Andrés, L., and Vistamehr, A., 2010, “Nonlinear Rotordynamics of Vehicle Turbochargers: Parameters Affecting Sub Harmonic Whirl frequencies and Their Jump,” Proc. of the 8th IFToMM International Conference on Rotordynamics, September, Seoul, Korea, Paper P-1115 Gjika, K., C. Groves, L. San Andrés, and LaRue, G., 2010, “Nonlinear Dynamic Behavior of Turbocharger RotorBearing Systems with Hydrodynamic Oil Film and Squeeze Film Damper in Series: Prediction and Experiment,” ASME Journal of Computational and Nonlinear Dynamics, Vol. 5 (October), p. 041006-(1-8). San Andrés, L., Maruyama, A., Gjika, K., and Xia, S., 2010, “Turbocharger Nonlinear Response with Engine-Induced Excitations: Predictions and Test Data,” ASME J. Eng. Gas Turbines Power, Vol. 132(March), p. 032502 (ASME Paper No. GT2009-59108) San Andrés, L., J.C. Rivadeneira, K. Gjika, C. Groves, and G. LaRue, 2007, “A Virtual Tool for Prediction of Turbocharger Nonlinear Dynamic Response: Validation Against Test Data,” ASME Journal of Engineering for Gas Turbines and Power, 129(4), pp. 1035-1046 (ASME Paper GT 2006-90873) San Andrés, L., J.C. Rivadeneira, K. Gjika, C. Groves, and G. LaRue, 2007, “Rotordynamics of Small Turbochargers Supported on Floating Ring Bearings – Highlights in Bearing Analysis and Experimental Validation,” ASME Journal of Tribology, Vol. 129, pp. 391-397. San Andrés, L., J.C. Rivadeneira, M. Chinta, K. Gjika, G. LaRue, 2007,”Nonlinear Rotordynamics of Automotive Turbochargers – Predictions and Comparisons to Test Data,” ASME Journal of Engineering for Gas Turbines and Power, 129, pp. 488-493 (ASME Paper GT 2005-68177) San Andrés, L., J.C. Rivadeneira, K. Gjika, M. Chinta, and G. LaRue, 2005, “Advances in Nonlinear Rotordynamics of Passenger Vehicle Turbochargers: a Virtual Laboratory Anchored to Test data,” Paper WTC 2005-64155, III World Tribology Conference, Washington D.C., September. References TC shaft motions virtual tool San Andrés, L., J.C. Rivadeneira, K. Gjika, C. Groves, and G. LaRue, 2006, “Rotordynamics of Small Turbochargers Supported on Floating Ring Bearings: Highlights in Bearing Analysis and Experimental Validation,” Paper CELT06-76, Memorias del IX Congreso y Exposición Latinoamericana de Turbomaquinaria, Boca del Río Veracruz, Mexico, June 22-23, 2006, ISBN 968-6114-20-3 Holt, C., L. San Andrés, S. Sahay, P. Tang, G. LaRue, and K. Gjika, 2005, “Test Response and Nonlinear Analysis of a Turbocharger Supported on Floating Ring Bearings,” ASME Journal of Vibrations and Acoustics, 127, pp. 107-212. San Andrés, L. and J. Kerth, 2004, “Thermal Effects on the Performance of Floating Ring Bearings for Turbochargers”, Journal of Engineering Tribology, Special Issue on Thermal Effects on Fluid Film Lubrication, IMechE Proceedings, Part J, Vol. 218, 5, pp. 437-450 Holt, C., L. San Andrés, S. Sahay, P. Tang, G. LaRue, and K. Gjika, 2003, “Test Response of a Turbocharger Supported on Floating Ring Bearings – Part I: Assessment of Subsynchronous Motions,” ASME Paper DETC 2003/VIB-48418, Proceedings of the 19th Biennial Conference on Mechanical Vibration and Noise,” Chicago (IL), September Holt, C., L. San Andrés, S. Sahay, P. Tang, G. LaRue, and K. Gjika, 2003, “Test Response of a Turbocharger Supported on Floating Ring Bearings – Part II: Comparisons to Nonlinear Rotordynamic Predictions,” ASME Paper DETC 2003/VIB-48419, Proceedings of the 19th Biennial Conference on Mechanical Vibration and Noise,” Chicago (IL), September Naranjo, J., C. Holt, and L. San Andrés, 2001, “Dynamic Response of a Rotor Supported in a Floating Ring Bearing,. 1st International Conference in Rotordynamics of Machinery, ISCORMA1, Paper 2005, August 2001 (CD only). Over 80 proprietary monthly progress reports to sponsor (Honeywell Turbocharging Systems), 2002-2011. References TC shaft motions virtual tool Luis San Andres © Learn more at http://rotorlab.tamu.edu