TC shaft motions virtual tool Research Progress Vehicle Turbocharger Nonlinear Rotordynamics Modeling and Experimental Validation Luis San Andrés Mast-Childs Tribology Professor Texas A&M University, Turbomachinery Laboratory January, 2011 Supported by Honeywell Turbocharger.

Download Report

Transcript TC shaft motions virtual tool Research Progress Vehicle Turbocharger Nonlinear Rotordynamics Modeling and Experimental Validation Luis San Andrés Mast-Childs Tribology Professor Texas A&M University, Turbomachinery Laboratory January, 2011 Supported by Honeywell Turbocharger.

TC shaft motions
virtual tool
Research
Progress
Vehicle Turbocharger
Nonlinear Rotordynamics
Modeling and Experimental
Validation
Luis San Andrés
Mast-Childs Tribology Professor
Texas A&M University, Turbomachinery Laboratory
January, 2011
Supported by Honeywell Turbocharger Technologies (HTT)
TC shaft motions virtual tool
• Introduction to
turbocharger rotordynamics
• Experimental facilities
• Development of predictive
models (Virtual Tool)
• Comparisons predictions vs
test data
• Closure
Overview
TC shaft motions virtual tool
Oil Inlet
TC Center Housing
Anti-Rotating Pin
Semi-Floating Bearing
Shaft
Compressor Wheel
Turbine Wheel
Turbochargers
• Increase internal combustion (IC) engine power output by
forcing more air into cylinder
• Aid in producing smaller, more fuel-efficient engines with
larger power outputs
TC shaft motions virtual tool
RBS: TC Rotor Bearing System(s)
RBS
Fully Floating Bearing
RBS
Semi Floating Bearing
RBS
Ball Bearing
The driver:
Increased IC engine performance & efficiency
demands of robust & turbocharging solutions
TC shaft motions virtual tool
Bearing types
Locking Pin
Locking Pin
Squeeze Film
Floating Ring
Ball Bearing
Outer Film
Inner Race
Inner
Film
Shaft
Outer Race
Shaft
Oil Feed Hole
Ball-Bearing
• Low shaft motion
• Relatively expensive
• Limited lifespan
Semi-Floating
Ring Bearing
(SFRB)
Floating Ring
Bearing
(FRB)
• Economic
• Longer life span
• Prone to
subsynchronous whirl
TC shaft motions virtual tool
Major challenges: extreme operating conditions
•
- Low Oil Viscosity, e.g. 0W30 or 0W20
•
•
•
•
•
•
- High Oil Temperature (up to 150°C)
- Low HTHS (2.9); Low Oil Pressure (1 bar)
- Increased Maximum Turbocharger Speed
- Variable Geometry Turbo Technology & Assisted e-power start up
- High Engine Vibration Level
- More Stringent Noise Requirements
Viscosity Plot
100
0W-30 Castrol SLX
Need predictive
too to reduce
costly engine test
stand qualification
Viscosity (cS)
0W-30 Castrol SLX Longlife
10
1
0
10
20
30
40
50
60
70
80
90
Water
100 110
Oil Temperature (deg C)
120 130 140 150 160
Literature
Andres
and students
TC shaft Review:
motionsSan
virtual
tool
• TC linear and nonlinear
rotordynamic codes – GUI
based – including engine
induced excitations
2004
IMEchE J. Eng. Tribology
2005
ASME J. Vibrations and Acoustics
ASME DETC 2003/VIB-48418
ASME DETC 2003/VIB-48419
2007
ASME J. Eng. Gas Turbines Power
ASME GT 2006-90873
2007
ASME J. Eng. Gas Turbines Power
ASME GT 2005-68177
2007
ASME J. Tribology
IJTC 2006-12001
2007
ASME DETC2007-34136
2010
ASME J. Eng. Gas Turbines Power
ASME GT2009-59108
2010
IFToMM Korea
Predictive tool saves time and money
• Realistic bearing models:
thermohydrodynamic
• Novel methods to estimate
imbalance distribution and
shaft temperatures
• NL analysis for frequency
jumps and noise reduction
• Measured ring speeds with
fiber optic sensors
TC testing: expensive and time consuming
Benchmarked against test data
Predictive tool for shaft motion benchmarked by test data
TC shaft
Main
Tasks
motions
– KEYvirtual
OBJECTIVES
tool
1. Measure shaft motion response in dedicated
PV and CV turbocharger test rigs (cold & hot
gas)
2. Development of software for prediction of
(S) floating ring bearing static and dynamic
forced response
3. Integration of FRB and SFRB tools into
nonlinear rotordynamics code – VIRTUAL
LABORATOY
4. Comparisons of test data to predictions:
Validate predictive tool
Test rigs
XLBRG
XLTRC2
Tools
TC shaft motions virtual tool
TC shaft motions virtual tool
Test rigs for TC
rotordynamic performance
evaluation
Turbine Bearing
Oil Supply Hole
Turbine wheel
Oil supply
Compressor
Bearing
Oil Supply Hole
Compressor wheel
SFRB Anti-Rotation
Pin Hole
KEY OBJECTIVE # 1
TC shaft motions virtual tool
Experiments to measure the rotordynamic response of a
turbocharger supported on semi-floating ring bearings and fully
floating ring bearings
Test Rigs
Construct various test rigs, develop
measurement methods, strategy to sensor
selection and measurement locations,
acquire data, processing tools, etc
KEY OBJECTIVE # 1
TC shaft motions virtual tool
• Infrared
tachometer
• RAM BN
sensors for shaft
motion
•Fiber optics for
ring motion
detection
TAMU TC test rig
2002
TC shaft motions virtual tool
• Infrared tachometer
• KAMAN sensors for
shaft displacement at
compressor side
• Accelerometers for
casing motion
•240 krpm max (4 KHz)
TAMU TC test rig
2004
TC shaft motions virtual tool
• KAMAN sensors for
shaft displacement at
compressor side
• connection to shakers
•300 krpm max (5 KHz)
TC gas stand test rig – HTT (France)
2008
TC shaft motions virtual tool
accelerations are collected with three-axis accelerometers.
Engine
Compressor Housing
Proximity Probes (X, Y)
3-axes
accelerometers:
engine isolated atop
a large shaker table
Air Inlet
Fig. 4 Turbocharger Engine Test Facility Stand
accelerometers
Accelerometers
TC engine stand test rig–HTT (Shanghai) 2008
TC shaft motions virtual tool
N ose –
d isp lacem en t
m easu rem en t
p lan e
co m p resso r
inche s
S e m i-flo ating ring b earin g
A nt-ro tatio n p in
turb ine
Shaft speed 25 - 240 krpm, Oil 5W-30,
150 C inlet temperature, feed pressure 1- 4 bar
Measure rotordynamic response of PV turbocharger
TC shaft motions virtual tool
T ES T D A T A - C o m p resso r E nd
TLV TEST DATA
1X
Dominance of sub synchronous
motions at all speeds
243
krpm
T LV T ES T D A T A - com pr ess or end
29 krpm
A m plitude (m m )
Se le c te d ba nd w ith
Se le c te d ba nd w ith
0.06
0 .4
A m pli tud e
F requen c y rati o
0 .6
0.03
0 .2
0
0
50
100
150
kR P M
200
250
0
0
50
100
150
200
kR P M
SU B S Y N C
SY N C H RO N O U S
waterfall compressor end shaft motions
whirl frequency ratio and amplitudes (mm) of vibration. Oil supply pressure = 1 bar, T=150 C
250
TC shaft motions virtual tool
TAMU TEST DATA
TC shaft motions virtual tool
Purpose
of
analysis is
to reduce
risk for
this type
of failure
TAMU
TEST
DATA
TC shaft motions virtual tool
Compressor Waterfalls - X Direction at Proximitor
CX max  589.28
Waterfall - X - COMPRESSOR
microns
2000
TAMU TEST
DATA
1X
A m plitud e
1500
 109
maxkRPM
1000
Compressor Spe cifie d WFR Analysis - X Dire ction at Proximitor
500
 1
ratio
C - X motions
600
0
1000
0
1000
2000
3000
minkRPM
 15.4
4000
R M S a m p lit ud e s
Frequency [Hz ]
W a te rfa ll o f s h aft m o tio n a t c o m p re s s o r e n d (X -d ire c tio n400
) ve rs u s
ro to r s p e e d . F a ilu re o f G T 1 5 4 4 Z
TC failure
200
0
0
(cold air operation)
10 - 110 krpm : Oil ISO VG 10
20
40
60
rot or spee d ( kRP M)
Comp Overall
Comp Peak
Comp at WFR
s ynchronous
80
100
120
TC shaft motions virtual tool
TC shaft motions virtual tool
TC fluid film bearings
Oil supply
Turbine side
bearing ½
moon groove
Compressor
side bearing
oil supply
holes
Turbine side
bearing oil
supply holes
Oil supply
Turbine bearing
outer film
Center housing
SFRB
Anti-rotation pin
Turbine
Turbine
Shaft
Shaft
Turbine
bearing
Turbine
bearing
inner
film
inner
film
KEY OBJECTIVE # 2
Comp bearing
outer film
Comp
Comp
Comp
bearing
Comp
bearing
inner
film inner film
TC shaft motions virtual tool
Development of software for prediction of (semi) floating
ring bearing (S-FRB) static and dynamic forced response
XLBRG Tool
EXCEL & Fortran FEM code for prediction of FRBs
and SFRBs forced response (static and dynamic)
Finite length bearing model with global thermal
balance and shear thinning effects
Interface to XLTRC2 software for rotordynamics
analysis
KEY OBJECTIVE # 2
Models
for fluidvirtual
films tool
TC
shaft motions
Reynolds Equations
Outer film pressure, Po
Outer oil film
Y
 ho
 
R 
R



  Po     e X R  eYR
e X R  sin 
 cos    eYR 
2 
2


 12  o
 
Ring
Shaft
X
Film thickness: ho  c o  e X cos(  )  eY sin(  )
R
R
Inner film pressure, Pi
Housing
Inner oil film
 h
 
 



  i   Pi      e X   eY   cos     eY   e X  sin 
2 
2


 12  i
 
Film thickness: h  c   e cos(  )   e sin(  )
i
i
X
Y
 e X  e X  e X ;  eY  eY  eY ;   
J
R
J
R
- Balance of drag torques from outer and inner oil films
- Thermal energy transport (heat conduction & convection)
2004 IMEchE J. Eng. Tribology
J  R
2
TC
Lumped
shaft motions
Parameter
virtual
Thermal
tool Model
Oil energy increase
~ Heat flow
bearing
Sp Heat x Mass flow x
Temperature Difference
Outer film Temp Rise
Outer film
Inner film
Inner film Temp Rise
Floating
ring
2004 IMEchE J. Eng. Tribology
Mechanical power
by fluid shearing
P ~ Torque x Rot Speed
shaft
Energy convected
to solids and
conducted through
shaft, ring and
bearing
TCBRG
XL
shaft
® INPUT
motions virtual tool
Geometry (cold) – L,D,C
Fluid Type (commercial oil)
Material properties
Operation (speed and load)
Example: Turbine side bearing
TC shaft
motions
tool
XL
BRG®:
typesvirtual
of bearings
Oil inlet,
Ps, TS
Oil inlet,
Ps, TS
ring
Halfmoon
groove
ring
shaft
shaft
Straight
feed hole
Oil supply in bearing
Figures NOT to scale
Types of oil supply
Oil supply – outboard side
TCBRG
XL
shaft
® INPUT
motions virtual tool
(Semi & Fully) Floating Bearing Ring
• Actual geometry (length, diameter, clearance) of inner and outer
films, holes size and distribution
• Supply conditions: temperature & pressure
• Lubricant viscosity varies with temperature and shear rate
(commercial oil)
• Side hydrostatic load due to feed pressure
• Temperature of casing
• Temperature of rotor at turbine & compressor sides derived from
semi-empirical model: temperature defect model
XLBRG® ETHD fluid film bearing model predicts operating
clearance and oil viscosity (inner and outer films) and
eccentricities (static and dynamic) as a function of shaft &
ring speeds and applied (static & dynamic) loads.
TCBRG
XL
shaft
® Output
motions virtual tool
ASME GT2006-90873
44
Oil Inlet Pressure = 2.06 bar
Oil Inlet Temperature = 38°C
Lubricant Exit Temp (C)
43
42
Measured Exit Temp
Predicted Exit Temp
41
5 oC
40
Predicted
Predictions
39
Test
Test data
data
38
37
0
10000
20000
30000
40000
50000
60000
70000
80000
Turbocharger Speed (rpm)
Fluid Exit Temperature – Prediction vs. Test Data
TCBRG
XL
shaft
® Output
motions virtual tool
(S)FRB Predictions :
Maximum temperature (C)
100% Engine Load - Inner Film
50% Engine Load - Inner Film
25% Engine Load - Inner Film
Lubricant Supply Temperature
Peak film temperatures
100% Engine Load - Outer Film
50% Engine Load - Outer Film
25% Engine Load - Outer Film
170
Inner film
160
150
Outer film
140
130
Supply
temperature
120
110
100
90
0
20000
40000
60000
80000 100000 120000 140000 160000 180000
Shaft speed (rpm)
ASME GT 2009-59108
Increase in power losses (with speed) leads to
raise in inner film & ring temperatures.
No effect of engine load
TCBRG
XL
shaft
® Output
motions virtual tool
(S)FRB Predictions :
100% Engine Load - Inner Film
50% Engine Load - Inner Film
25% Engine Load - Inner Film
Oil effective viscosity
100% Engine Load - Outer Film
50% Engine Load - Outer Film
25% Engine Load - Outer Film
Lubricant type:
SAE 15W - 40
Effective viscosity (cP)
7
6
outer film
5
4
Inner film
3
2
1
Supply viscosity: 8.4 cP
0
0
20000
40000
60000
80000 100000 120000 140000 160000 180000
Shaft speed (rpm)
LUB: SAE
15W-40
ASME
GT 2009-59108
Higher film temperatures determine lower
lubricant viscosities. Operation parameters
independent of engine load
TCBRG
XL
shaft
® Output
motions virtual tool
(S)FRB Predictions :
100% Engine Load - Inner Film
50% Engine Load - Inner Film
25% Engine Load - Inner Film
1.20
Film clearances
100% Engine Load - Outer Film
50% Engine Load - Outer Film
25% Engine Load - Outer Film
Film clearance
Cold clearance
1.15
Inner film
1.10
1.05
nominal
clearance
1.00
0.95
0.90
outer film
0.85
0.80
0
20000
40000
60000
80000 100000 120000 140000 160000 180000
Shaft speed (rpm)
Thermal growth relative to nominal
inner or outer cold radial clearance
ASME GT 2009-59108
Inner film clearance grows and outer film
clearance decreases – RING grows more
than SHAFT and less than CASING. Material
parameters are important
TC shaft motions virtual tool
TC shaft motions virtual tool
TC rotordynamics
linear and nonlinear
KEY OBJECTIVE # 3
TC shaft motions virtual tool
Integration of FRB and SFRB codes into nonlinear
rotordynamics program
XLTRC² Rotordynamics Virtual Tool
• Beam Finite-Element Formulation
• Real Component-Mode Synthesis (CMS) model
• Multi-line Rotor/Housing Modeling Capability
• Linear and transient response nonlinear analyses
• Fully integrated with an extensive suite of support codes
• User-Friendly GUIs for rapid model development and report
generation
General EOMs
  C q   G q  K q  Q (t)
Mq
KEY OBJECTIVE # 3
TC shaft rotordynamics
motions virtualcode
tool
XLTRC²
1
• Timoshenko-beam,
FE-formulation
• Calculates real modes
• Reduces model
dimensionality by using a
limited number of modes
m1
m2
f1(t)
Component-Mode Synthesis (CMS)
m3
m4
f4(t)
TC shaft
Rotor
structural
motionsFE
virtual
models
tool
T C 2 5 T u rb o c h a rg e r (F R B S = S h a fts 2 & 3 )
c o m p re s s o r (le ft s id e ) - tu rb in e (rig h t s id e )
0 .0 4
0 .0 3
20
60
15
0 .0 2
65
S h a ft2S h a ft2
Compressor thrust disk shaft
turbine
Typical TC rotor hardware
S ha f t R a dius , m e t e rs
73
S h a ft3S h a ft3
75
76
78
25
0 .0 1
S h a ft1
55
5
10
70 72
S h a ft1
30
35
40
45
50
1
0
-0 .0 1
FRB
FRB
2 n d s h a ft
3 rd s h a ft
-0 .0 2
-0 .0 3
-0 .0 4
0
0 .0 2
0 .0 4
0 .0 6
0 .0 8
0 .1
0 .1 2
A x ia l L o c a tio n , m e te rs
Typical FE rotor structure model
T 2 tu rb och arger an d F R B s m od eled as th ree -sh aft roto r. F R B s as sh afts 2 & 3.
TC shaft rotor
Validate
motions
model
virtual tool
Rotor finite element model:
Validate rotor
model with
measurements
of free-fee
modes
(room Temp)
Thrust Collar
0.03
Shaft Radius [m]
0.02
Shaft Motion Target
2 shaft model
Unbalance Planes
Feed Pressure
0.01
Rotor: 6Y gram
SFRB: Y gram
0
-0.01
Thrust Collar Semi-Floating
Ring Bearing
Compressor Wheel
Bearing
Compressor
-0.02
CG Rotor
Turbine Wheel
Bearing
Turbine
-0.03
0
0.02
0.04
0.06
0.08
Axial Location [m]
Compressor
SFRB
0.1
Turbine
0.12
Static weight load
distribution
Compressor Side: Z
Turbine Side: 5Z
Shaft Radius, me
0.01
TC shaft rotor
Validate
motions
model
virtual tool
0
-0.01
Compressor
End
-0.02
Free-free natural frequency & shapes
-0.03
Turbine End
-0.04
0
0.02
0.04
0.06
0.08
0.1
0.12
Axial Location, meters
0.04
Predicted (Freq = 1.823 kHz)
0.02
0.01
0
-0.01
Compressor
End
-0.02
-0.03
Turbine End
-0.04
Measured (Freq = 4.938 kHz)
Second mode
Predicted (Freq = 4.559 kHz)
0.03
Shaft Radius, meters
0.03
Shaft Radius, meters
0.04
Measured (Freq = 1.799 kHz)
First mode
0.02
0.01
0
-0.01
measured
prediction
-0.02
-0.03
-0.04
0
0.02
0.04
0.06
0.08
0.1
0.12
0
0.02
0.04
Axial Location, meters
0.04
0.08
0.1
0.12
Axial Location, meters
Measured (Freq = 4.938 kHz)
Second mode
measured
Predicted (Freq = 4.559 kHz)
0.03
Shaft Radius, meters
0.06
Predicted
% diff
KHz
KHz
-
First
1.799
1.823
1.3
Second
4.938
4.559
7.7
0.02
0.01
0
-0.01
measured
Measured andprediction
predicted free-free natural frequencies and mode shapes
agree: rotor model validation
-0.02
-0.03
-0.04
0
0.02
0.04
0.06
0.08
Axial Location, meters
0.1
0.12
TC shaft &
motions
tool
XLTRC²
XLBRG virtual
interfacing
Synchronous response
Eigenvalue analysis
Linear Model
XLTRC2
Synchronous response
Subsynchronous motions
Limit Cycle Orbits
Non- Linear Model
Rotordynamic Stability Map
XLBRG
0.40
Compressor end
1X
Compressor Nose (stn 4)
1.2
0.35
0.09
9.0
1.00
0.50
FRB
GeometryDamped
and
SYNCHRONOUS
RESPONSE
1 Natural Frequency
Rotordynamic
Map
29
krpm
Rotordynam
ic Response Plot
Compressor
End
TOTAL
MOTION
0.30
0.45
Operating
Conditions
(1X)
Y - Direction
0.06 Synchronous
Damping Ratio
206 kPa - 38 C Nominal inlet temperature
8.0
8.00
A
0.00
0
-0.01
L3
Inner film

200
0
-0.2
0.004
0.10
1.000
HG
0.
0.05
0.995
-0.02
0.02
0.003
Compressor
Temperature raise (C)
15 20
25
2.0
6.60
50000.
1.0
6.40
0.0
6.20
100000.
FRB
FRB
0.990
6.00
0
0
150000.
1000 10000
20000
2000
Thermal growth relative to Ci+Co
0
40000
0
-0.06
400
600
0.00
Horz Amp
Major Amp 150000.
Horz Amp
Vert40000
Amp
Excitation = 1x
50000
CG rotor
Shaft speed (rpm)
Turbine 60000
30000
200000.
3000 40000 400050000
5000
Excitation
= 1x
Shaft speed
Frequency
(Hz) (RPM)
200000.
Vert Amp
60000
70000
80000
70000
6000 80000
Outer clearance
0.12
0.14
0.16
0
10000
20000
30000
40000
50000
60000 200000
70000
80000
120000
160000
120000
160000
200000200000
50000
100000
150000
Shaft Speed (rpm)
Shaft speed (RPM)
shaft
(rpm)Speed,
1000
1200
14000.10 rpm
1600
1800 0.152000
Rotor
0.05speed
0.20
40000
80000
800
M ajor Amp
Turb FRB Outer film
Rotor
Speed,
rpm
0.06
0.08 0.9850.1
0.04 0
0.00
6.80
Successful
integration of FRB
tools into
rotordynamics
Rotor Speed, rpm
program
0206 kPa -10000
20000
30000
38
C Nominal
inlet temperature
NONLINEAR
RESULTS
0.00
100000.
Effective viscosity (Cpoise)
0
0.005
0.03
0.002
0.01
50000.
-0.04
0.001
0.02
0
0.04
0.006
Amplitude (-)
Inner and outer film clearance change
LG2
L2
Response
0-pk
Amplitude (0-pk)
Shaft Radius
L1
Nonlinear pred
Nonlinear Sync (1X) Inner lubricant film
Comp FRB inner film °C
data
TURBINE
NOSE Test
0.8
Compressor End
7.0
7.80
orbit
CompPredicted
FRB outer film
°C size
Linear
(1x)
L:
Compressor
, R:Sync
Turbine
Rotordynamic
Deflected
Shape
Plot
Outer lubricant film
Y - Direction
0.07
imbalance
planes
STATION
46inner
1.015
Turb FRB
film °C
TEST
DATA
LINEAR0.25
RESULTS
7.60
6.0kPa - 38 C Nominal
206
inlet
temperature
Test data
Turb
FRB
outer film °C
1X
0.6
L: Compressor , R: Turbine
Test data
Inner clearances
7.84 Cpoise
0.01
Ci/Co: 35.5/97
microns
0.04
Turbocharger
+ FRB model
7.40
0.06
Nominal Viscosity@38 oC
5.0
Deflected Shape at0.20
35000
rpm
1.010
Comp FRB inner film
0.009
0.4
5
7.20
Comp FRB outer film
1X - synchronous
4.0
Comp FRB inner film
0.008
0.05
Shaft1
Turb FRB inner film
35
0.02
Shaft2
Shaft2
Shaft3 Shaft3
Comp
FRB Outer film
7.00
1.005
0.2
0.15
39 InnerOuter
Shaft1
Turb
FRB outer44
film
lubricant
lubricant
film film
40
45
49
10
30
3.0
0.0071
Turb FRB inner film
Amplitude (-)
XLHYPAD
20000.40 0.80
1800
16000.35
1400 0.030.60
0.30
1200
Outer0.025
film
1000
0.25
800 0.02
0.40
6000.20
0.015
400
2000.15 0.01
0.20
0
0.005
L0.10
G1
0.
0
0.05
0.00
0
-0.005
Amplitude (-)
Response Amplitude
Natural Frequency, Hz
0.08
80000
0.25
Shaft speed (rpm)
Axial Location
Virtual Laboratory
Axial Location
XLTRC²
TC predictions:
NL
shaft motions
typical
virtualresponses
tool
0.1
0.08
0.06
0.05
0.04
0.02
0
0
-0.02
-0.05
-0.04
-0.06
-0.1
-0.08
-0.1
-0.15
0
1
2
18 krpm
3
4
5
6
7
-0.12
0
1
240 krpm 240 krpm
2
3
4
5
6
7
18 krpm
Predictions of TC shaft motion response – displacement
versus time: rotor acceleration & deceleration
TC predictions:
NL
shaft motions
analyses
virtual tool
in frequency domain
Important:
Massive amounts of time domain data rarely show
any value (do not add knowledge nor establish firm
design rules not even rules of thumb)
Analysis stresses on frequency domain analysis to
build waterfalls, find total motion and synchronous
motions, filtering of major whirl frequencies to
determine effect on rotor elastic motions,
calculation of forces transmitted to casing and
rotor.
TC shaft motions virtual tool
TC shaft motions virtual tool
Test data vs. predictions
Validations
If successful,
a) Ready tool for PRODUCTION
b) Demonstrate savings
c) Install tool at all TC core engineering
centers
KEY OBJECTIVE # 4
Variations
manufactured
TC shaft in
motions
virtualRING
tooldimensions
Outer film
ODmax
ODmin
Comin
ID casing
Outer film
Comax
Cimin
Cimax
IDmin
Inner film
RING
IDmax
Inner film
ID
Costly procedure to qualify TCs
Four corners clearance limits
OD
OD shaft
Costly
TCmotions
qualification
TC shaft
virtualcertification
tool
Outer film
ODmax
ID casing
Outer film
Inner film
ODmin
IDmin
RING
IDmax
Inner film
ID
Past: NHS tests at 4 corners
OD
OD shaft
Savings
TC qualification
certification
TC shaft in
motions
virtual tool
Determined from Virtual Tool
Outer film
ODmax
ID casing
Outer film
Inner film
ODmin
IDmin
RING
IDmax
Inner film
ID
Current: One (or no) NHS test
OD
OD shaft
TC shaft motions virtual tool
Validation: shaft motion for PV TC
TC shaft motions virtual tool
TC rotor & bearing system
Compressor
Turbine
Spacer
2 shaft model
Example: RBS
with Semi
Floating
Bearing
126.44 mm
shaft speed 18 - 240 krpm
Oil 5W-30, 100 C inlet temperature, feed pressure 2,4 bar
u
C
ASME DETC2007-34136
T
TC shaft motions- virtual
tool
ODmax-IDmax
compare
Measured Steady-State Waterfall / Y Displacement
RBS with ODmaxIDmax / Oil Texaco-Havoline Energy 5W30, 150°C, 4bar
0.07
Subsynchronous Components
Synchronous Component
0.06
Motion Amplitude
0.05
0.04
0.03
0.02
Predicted at compressor end
0.01
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
ODmaxIDmax, Oil 5W30, Inlet Temp. = 150°C, Inlet Pressure = 4bar
Frequency (Hz)
Measured at compressor end
Normalized Nonlinear Response
0.07
Synchronous
0.06
4062 Hz
0.05
0.04
0.03
0.02
0.01
0
0
WATERFALLs of SHAFT MOTION
ASME DETC2007-34136
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000
Frequency (Hz)
TC shaft motions- virtual
tool
ODmax-IDmax
compare
ODmaxIDmax Oil 5W30, Inlet Temp. = 150°C, Inlet Pressure = 4bar
Motion Amplitude [-]
70
Total motion &
1X motion
Test: Total Motion
Predicted: Total
Test: Synchronous
Predicted: Synchronous
60
50
40
30
20
10
0
0
500
1000
1500
2000
2500
3000
3500
4000
4500
Turbocharger Speed (Hz)
Whirl frequency
Subsynchronous Freq. (Hz)
ODmaxIDmax Oil 5W30, Inlet Temp. = 150°C, Inlet P
bar
1500
1350
Test
1X
Prediction
1200
1050
900
750
600
450
300
150
0
0
500
1000
1500
2000
2500
3000
Turbocharger Speed (Hz)
ASME DETC2007-34136
3500
4000
4500
TC shaft motions- virtual
tool
ODmin-IDmax
compare
900
Mode 1
Mode 2
Mode 3
Nonlinear Prediction
Test data
Natural Frequency (Hz)
800
700
Mode 3
Cylindrical - Deformed Mode Shape
Mode 2
Compressor - End Ring Mode
Mode 1
Conical Mode Shape
1X
600
500
400
300
200
100
0
0
500
1000 1500 2000 2500 3000 3500 4000 4500
Turbocharger Speed (Hz)
Nonlinear predictions reproduce test data – Linear eigenvalue
analysis is limited in accuracy
ASME DETC2007-34136
TC shaft motions virtual tool
TC shaft motions virtual tool
Validation: shaft motion for CV TC
TC shaft motions virtual tool
TC rotor & bearing system
3 shaft model
shaft speeds 30 - 180 krpm
Oil 0W-30, 92 C inlet temperature, feed pressure 4 bar
TC shaft motions
virtual tool
Validation
CV TC
4 bar
TEST DA TA - DISPLACEMENT
Ymax  0.038
0.08
A m plitude [m m ]
TESTS
Test data shows broad bands in sub
synchronous frequency regions.
Whirl motions persist at all speeds.
0.053
RPM
0.027
N
 1.843  10
5
cas e
184.3 krpm
RPM
0
29.7
0
1000
2000
3000
4000
5000
 2.976  10
4
0
krpm
6000
Frequency [Hz]
Y-Compre ssor end
0.08
Prediction
Predictions show sub synchronous
frequencies to 184 krpm. More severe
than test data at low shaft speeds.
A m plitude [m m ]
0.06
0.04
184.3 krpm
*
0.02
29.76 krpm
0
0
1000
2000
3000
Frequency [Hz]
TC – Waterfalls: Test data and Nonlinear predictions
4000
5000
6000
TC shaft motions virtual tool
0 .0 3
Y - D ire c tio n
4 b a r; va ria b le te m p
C o m p re s s o r N o s e (s tn 4 )
Nonlinear
response
predictions (1X
0 .0 2 5
N o n lin e a r S yn c (1 X )
A m p litu d e (m m 0 -p k )
L in e a r S yn c (1 x)
T e st d a ta
0 .0 2
8% of physical limit
filtered)
0 .0 1 5
compares best
with test data at
low shaft
speeds
TESTS
0 .0 1
0 .0 0 5
Nonlinear response (1X filtered)
0
0
25000
50000
75000
100000
125000
150000
175000
200000
S h a ft S p e e d (rp m )
Imbalance response (linear and nonlinear) vs test data
TC shaft motions virtual tool
G T 2560
0 .5 0 0
4 b a r; va ria b le te m p
0 .5 1 7 m m (p k -p k ) p h ys ic a l lim it
C o m p re s s o r N o s e (s tn 4 )
Good
correlation with
test data, in
particular at
mid shaft speed
range (70-130
kprm).
A m p litu d e (m m )
0 .4 0 0
P re d icte d O rb it S ize
0 .3 0 0
T e st d a ta
60 % of physical limit
TESTS
0 .2 0 0
0 .1 0 0
Nonlinear
response (orbit
analysis)
0 .0 0 0
0
25000
50000
75000
100000
125000
150000
175000
200000
s h a ft s p e e d (rp m )
Total Motion: test data and predictions
Test data &
predictions
show persistent
sub sync
motions
TC shaft motions virtual tool
Validation: engine induced
excitations
ASME GT 2009-59108
TC
IC engine
shaft motions
inducedvirtual
excitations
tool
Operating conditions from test data:
– TC speed ranges from 48 krpm – 158 krpm
– Engine speed ranges from 1,000 rpm – 3,600 rpm
– 25%, 50%, 100% of full engine load
– Nominal oil feed pressure & temperature: 2 bar, 100°C
accelerations are collected with three-axis accelerometers.
Engine
Engine
Compressor Housing
Compressor Housing
Proximity
Probes
Proximity
Probes (X, Y)
(X, Y)
TC Engine Test Facility Stand
Air Inlet
Air Inlet
ASME GT 2009-59108
TC
IC engine
shaft motions
inducedvirtual
excitations
tool
TC housing acceleration analysis
100% engine load
Center Housing
m/s2
~570 Hz
A m plitu de
300
2, 4, and 6
times engine
(e) main
frequency
contribute
significantly
200
100
0
0
2
4
6
8
10
12
14
16
18
20
Order of engine frequency
Combined manifold
& TC system natural
frequencies
~300 Hz
Comp. Housing
m/s2
A m plitu de
300
3600 rpm
200
100
0
0
2
4
6
8
10
12
Order of engine frequency
ASME GT 2009-59108
14
16
18
20
1000 rpm
1e order
frequency
does not
appear
TC
IC engine
shaft motions
inducedvirtual
excitations
tool
Housing accelerations into model
Connection to engine mount
Accelerometer
Compressor
housing
Center Housing
Specified housing
motion
due to engine
Semi Floating Ring
Bearing Assembly
Eddy current
sensor
Compressor
Turbine
Shaft
Axial
Bearing
Assembly
ASME GT 2009-59108
TC
IC engine
shaft motions
inducedvirtual
excitations
tool
Waterfalls of shaft motion at compressor end 100% engine load
0.25
0.25
Test Data
Predictions with Housing Acceleration
0.2
TC synchronous response
0.15
3.6 krpm
0.1
0.05
Amplitude 0-pk (-)
Amplitude 0-pk (-)
0.2
TC synchronous response
0.15
0.05
1.0 krpm
0
0
500
1000
1500
2000
2500
3000
3500
4000
500
1000
1500
2000
2500
3000
3500
4000
Frequency (Hz)
0.25
Housing accelerations induce
broad range, low frequency
whirl motions
Predictions without Housing Acceleration
0.2
TC synchronous response
0.15
1.0 krpm
0
0
Frequency (Hz)
Amplitude 0-pk (-)
3.6 krpm
0.1
3600 rpm
3.6 krpm
0.1
0.05
Test data shows broad
frequency response at low
frequencies (engine speeds)
1.0 krpm
0
0
500
1000
1500
2000
2500
Frequency (Hz)
3000
3500
4000
1000 rpm
ASME GT 2009-59108
IC engine
induced excitations
TC
shaft motions
virtual tool
Total shaft motion at compressor end (amplitude)
100% engine load
0.50
Test Data
pk-pk (-)
Amplitude
Amplitude pk-pk (-)
0.45
Nonlinear Predictions
0.40
Good
correlation
with test data
for all shaft
speeds
Test data
0.35
0.30
0.25
0.20
NL pred.
0.15
0.10
0.05
0.00
0
500
1000
1500
2000
2500
Shaft speed
Rotor
speed(rpm)
(RPM)
ASME GT 2009-59108
3000
3500
4000
IC engine
induced excitations
TC
shaft motions
virtual tool
order engine frequencies, most likely due to the engine
Subsynchronous
freq. vs. IC engine speed
firing
(Hz)
frequency
Subsynchronous
Frequency
[Hz]
600
prediction
Nonlinear Predictions
measured
12e 11e 10e
Test Data
550
500
9e
8e
Test
450
7e
TC shaft selfexcited freqs.
400
6e
350
300
5e
250
4e
200
3e
150
100
2e
50
NL1e
0
0
250
500
750
1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 3500 3750 4000
Engine speed (rpm)
Engine speed (RPM)
Subsynch.
freqs. are
multiples of
IC engine
frequency
Higher
engine
order
frequencies
not
predicted
100%
engine
load and measured subsynchronous whirl
Fig. 15.
Predicted
frequencies
TC manifold nat freq.
ASME GT 2009-59108
TC shaft motions virtual tool
Validation: noise generation &
frequency jump
IFToMM 2010
TC shaft motions
Frequency
jumps: test
virtual
datatool
center housing acceleration (test data)
Jump from 1st to 2nd whirl frequency increases noise
Mode 2: Cylindrical
2
22
Synchronous: 1X

Rotor Speed
Shaft accelerates
Top speed ~180 krpm (3 kHz)
Oil inlet temp= 30C
Oil inlet pressure = 4 bar
Jump
bifurcation =2 1+2
Bifurcation speed ~105
krpm (1.75 kHz)
1
Mode 1: Conical
21
Frequency (Hz)
31
Objective: study bearing parameters and rotor characteristics
affecting frequency jump
TC predictions:
NL
shaft motions
frequency
virtual tool
jumps
Horizontal direction
ω2
ω1
0.2
ω1
1X
Contour map
0.1
Amplitude (-)
0.3
Waterfalls of shaft motion (compressor end)
30 krpm
Jump at 182krpm
(ramp down)
1X
0
10
Fre 00 20
00
qu
en
30
cy
(Hz 00 4
000
)
105
rpm)
ed (k
240
30
105
e
r Sp
Roto
30
Jump at 182 krpm
(ramp down)
Max speed, 240 krpm
Jump at 165 krpm
(ramp up)
M_X
177
Jump at 165 krpm
(ramp up)
1X
30 krpm
1000
IFToMM 2010
WFM_Y
WFM_Y
ω1 ω2
2000
3000
Frequency (Hz)
68
4000
TC predictions:
NL
shaft motions
frequency
virtual tool
jumps
Rotor subsynchronous frequency (and amplitude) versus shaft speed (compressor end)
@ Ωb= 165krpm (2.75kHz)
5ω1 ~ 4ω2
3ω1 + ω2~ Ωb
1400
ω1_up
Rotor accelerates
ω2_up
0.04
C
800
T
0.02
600
ω2 = 815 Hz
Ωb= 165krpm
0
 0.02
400
 0.04
 0.05
C
ω1_down
ω2_down
100
150
Shaft Speed (krpm)
Compressor end
200
0.15
T
ω1 = 654 Hz
Ωb= 165krpm
250
 0.02
 0.04
 0.05
0
0.05
0.1
0.15
@ Ωb=182krpm (~3kHz)
5ω1 ~ 4ω2
2ω1 + 2ω2~ Ωb
182 krpm
JUMP
Y-direction
1000
0.1
0
50
1200
0.05
0.02
UP
1400
Conical rotor filtered
whirling mode
0
0.04
0
Cylindrical bending rotor
filtered whirling mode
800
0.02
C
T
0.01
600
ω2 = 845 Hz
Ωb= 182krpm
0
400
 0.01
 0.02
 0.05
0.1 (-)
Frequency (Hz)
Cylindrical bending rotor
filtered whirling mode
Y-direction
0
IFToMM 2010
165 krpm
Compressor end
1000
200
Rotor decelerates
JUMP
0.10.1
(-) (-)
Frequency (Hz)
1200
200
0
0.04
DOWN
0
0
0.02
50
100
150
Shaft Speed (krpm)
200
250
0
 0.02
Conical rotor filtered whirling
mode
C
0.05
0.1
0.15
T
ω1 = 674 Hz
Ωb= 182krpm
TC predictions:
NL
shaft motions
noise
virtual tool
0.08
0.15
0.06
0.1
0.04
0.05
0.02
0
0
-0.02
-0.05
-0.04
-0.1
-0.06
-0.15
-0.08
-0.1
-0.2
0
1
2
18 krpm
3
4
5
6
7
240 krpm
0
1
18 krpm
2
3
4
5
6
240 krpm
Predictions of TC shaft motion response – displacement
versus time: rotor acceleration
IFToMM 2010
7
TC shaft motions virtual tool
TC shaft motions virtual tool
1. Tests SHOW dominance of SUB SYNCHRONOUS
MOTIONS on rotordynamic response of PV TCs
2. TOOL for prediction of fully floating and semi-
TAMU & HTT
XLBRG
floating ring bearing (SFRB) static and dynamic forced
response is ACCURATE
XLTRC2
3. VIRTUAL TOOL: Seamless Integration of
FRB and SFRB codes into nonlinear rotordynamics
program
Substantial savings in product
development/prototype testing
Major
benefit to industry
Closure
Test vs.
predictions
TC shaft motions virtual tool
TAMU-HTT VIRTUAL TOOL for Turbocharger
NL Shaft Motion Predictions
XLTRC2® & XLBRG® have a demonstrated 70% cycle time
reduction in the development of new CV TCs. Since 2006,
code aids to developing PV TCs with savings up to
$150k/year in qualification test time
Predicted shaft motion
Measured shaft motion
Measured Steady-State Waterfall / Y Displacement
RBS with ODminIDmax / Oil Texaco-Havoile Energy 5W30, 150°C, 4bar
Predicted Steady-State Waterfall / Y Displacement
RBS with ODminIDmax / Oil Texaco-Havoline Energy 5W30, 150°C, 4bar
0.07
0.07
Subsynchronous Components
Subsynchronous Components
Synchronous Component
Synchronous Component
0.06
Normalized Nonlinear Response
0.06
Motion Amplitude
0.05
0.04
0.03
0.02
0.01
0.05
0.04
0.03
0.02
0.01
0
0
500
1000
1500
2000
2500
3000
3500
Frequency (Hz)
ASME DETC2007-34136
4000
4500
5000
5500
6000
0
0
500
1000
1500
2000
2500
3000
3500
Frequency (Hz)
4000
4500
5000
5500
6000
TC shaft motions virtual tool
HTT 2011-12 Project
Complete thermal analysis of FRBs and S-FRBs for TCs
• Prediction of thermal fields in entire TC system
• Quantification of power losses and prediction of bearing
seizure & oil coking
• Analysis of frequency jump phenomena and multiple
internal and combined resonances
•$ 350 k (2 years)
TC
shaft motions
virtual tool
Oil-less
turbochargers
Driver: HT ceramic ICEs with improved reliability
Advantages:
+ TH efficiency, HT limited by
materials only, less contamination
Disadvantages:
+ cost, more parts & balancing
Unknown performance for large
dynamic loads & road conditions
Unknown thermal soaking
Cheap solution sought:
metal wire mesh bearings!
TC
shaft
motions
virtual
tool
Other
forces
and
issues
Thrust bearings:
Tools available
Issues: thermal & coupling to
lateral RD in PV TCs
Aerodynamic forces:
Tools available
Issue: At + high speeds, turbine
develops a destabilizing force
Piston ring seal:
Unknown forces.
Issue: oil coking locks ring
CV TC
PV TC
TC
shaft motions
virtual
Aerodynamic
force
in tool
turbines
As rotor whirls, regions of low clearance improve efficiency
of blades and generate a force (from torque)
Y
X
Low clearance,
High blade efficiency
Increased turbine force
X
rotation
Large clearance,
low blade efficiency
Reduced turbine force
T: torque
D: tip diameter
H: blade height
: efficiency parameter (empirical) =1-1.5
Tip Clearance Excitation Force
Whirl direction
Thomas-Alford Force Model
 F X  K XY  Y ,  FY   K YX  X
K xy   K yx 
T
DH
Review
TC shaft motions virtual tool
Acknowledgments
Honeywell Turbocharging Technologies
(2002-2011)
TAMU Turbomachinery Laboratory
Turbomachinery Research Consortium
(XLTRC2®)
Learn more at
Luis San Andres
http://rotorlab.tamu.edu
© 2011
TC shaft motions virtual tool
San Andrés, L., and Vistamehr, A., 2010, “Nonlinear Rotordynamics of Vehicle Turbochargers: Parameters Affecting
Sub Harmonic Whirl frequencies and Their Jump,” Proc. of the 8th IFToMM International Conference on
Rotordynamics, September, Seoul, Korea, Paper P-1115
Gjika, K., C. Groves, L. San Andrés, and LaRue, G., 2010, “Nonlinear Dynamic Behavior of Turbocharger RotorBearing Systems with Hydrodynamic Oil Film and Squeeze Film Damper in Series: Prediction and Experiment,” ASME
Journal of Computational and Nonlinear Dynamics, Vol. 5 (October), p. 041006-(1-8).
San Andrés, L., Maruyama, A., Gjika, K., and Xia, S., 2010, “Turbocharger Nonlinear Response with Engine-Induced
Excitations: Predictions and Test Data,” ASME J. Eng. Gas Turbines Power, Vol. 132(March), p. 032502 (ASME Paper
No. GT2009-59108)
San Andrés, L., J.C. Rivadeneira, K. Gjika, C. Groves, and G. LaRue, 2007, “A Virtual Tool for Prediction of
Turbocharger Nonlinear Dynamic Response: Validation Against Test Data,” ASME Journal of Engineering for Gas
Turbines and Power, 129(4), pp. 1035-1046 (ASME Paper GT 2006-90873)
San Andrés, L., J.C. Rivadeneira, K. Gjika, C. Groves, and G. LaRue, 2007, “Rotordynamics of Small Turbochargers
Supported on Floating Ring Bearings – Highlights in Bearing Analysis and Experimental Validation,” ASME Journal of
Tribology, Vol. 129, pp. 391-397.
San Andrés, L., J.C. Rivadeneira, M. Chinta, K. Gjika, G. LaRue, 2007,”Nonlinear Rotordynamics of Automotive
Turbochargers – Predictions and Comparisons to Test Data,” ASME Journal of Engineering for Gas Turbines and
Power, 129, pp. 488-493 (ASME Paper GT 2005-68177)
San Andrés, L., J.C. Rivadeneira, K. Gjika, M. Chinta, and G. LaRue, 2005, “Advances in Nonlinear Rotordynamics of
Passenger Vehicle Turbochargers: a Virtual Laboratory Anchored to Test data,” Paper WTC 2005-64155, III World
Tribology Conference, Washington D.C., September.
References
TC shaft motions virtual tool
San Andrés, L., J.C. Rivadeneira, K. Gjika, C. Groves, and G. LaRue, 2006, “Rotordynamics of Small Turbochargers
Supported on Floating Ring Bearings: Highlights in Bearing Analysis and Experimental Validation,” Paper CELT06-76,
Memorias del IX Congreso y Exposición Latinoamericana de Turbomaquinaria, Boca del Río Veracruz, Mexico, June
22-23, 2006, ISBN 968-6114-20-3
Holt, C., L. San Andrés, S. Sahay, P. Tang, G. LaRue, and K. Gjika, 2005, “Test Response and Nonlinear Analysis of a
Turbocharger Supported on Floating Ring Bearings,” ASME Journal of Vibrations and Acoustics, 127, pp. 107-212.
San Andrés, L. and J. Kerth, 2004, “Thermal Effects on the Performance of Floating Ring Bearings for Turbochargers”,
Journal of Engineering Tribology, Special Issue on Thermal Effects on Fluid Film Lubrication, IMechE Proceedings,
Part J, Vol. 218, 5, pp. 437-450
Holt, C., L. San Andrés, S. Sahay, P. Tang, G. LaRue, and K. Gjika, 2003, “Test Response of a Turbocharger
Supported on Floating Ring Bearings – Part I: Assessment of Subsynchronous Motions,” ASME Paper DETC
2003/VIB-48418, Proceedings of the 19th Biennial Conference on Mechanical Vibration and Noise,” Chicago (IL),
September
Holt, C., L. San Andrés, S. Sahay, P. Tang, G. LaRue, and K. Gjika, 2003, “Test Response of a Turbocharger
Supported on Floating Ring Bearings – Part II: Comparisons to Nonlinear Rotordynamic Predictions,” ASME Paper
DETC 2003/VIB-48419, Proceedings of the 19th Biennial Conference on Mechanical Vibration and Noise,” Chicago
(IL), September
Naranjo, J., C. Holt, and L. San Andrés, 2001, “Dynamic Response of a Rotor Supported in a Floating Ring Bearing,.
1st International Conference in Rotordynamics of Machinery, ISCORMA1, Paper 2005, August 2001 (CD only).
Over 80 proprietary monthly progress reports to sponsor (Honeywell Turbocharging Systems), 2002-2011.
References
TC shaft motions virtual tool
Luis San Andres ©
Learn more at http://rotorlab.tamu.edu