The modulus function

Download Report

Transcript The modulus function

The modulus function

The modulus of x, written

x

and is defined by

x

= x if x

0

x

= -x if x < 0.

Sketch of y =

x

Sketch the curve y = f(x), using a dashed line for points below the x-axis Reflect any part of the curve below the x-axis in the x-axis.

y =

x

y = - x y y =

x

y = x x

Sketch y =

2x - 1

The graph of y =

 2

x

- 1 

has the right-hand branch with equation y = 2x – 1.

The left-hand branch is the negative of 2x – 1, i.e. y = -2x + 1.

y = -2x +1 y y = 2x - 1 x

Sketch y =

(x-1)(x-2)

 3

y

2 1 0 0 -1 1 2 3

x

Sketch y =

cos x

y =

cos x

 1.5

0.5

-0.5

0 -1.5

90 180 270 360

x

Equations involving modulus

Solve the equation

2x - 1

 = 3

y = 3 Left-hand branch: -2x + 1 = 3

x = - 1 Right-hand branch: 2x - 1 = 3

x = 2 Solution: x = -1 or x = 2

Examples

Solve the equation

2x - 1

=

x - 2

Critical values x < ½ ½

x

2 x > 2

 2

x

- 1  

x

- 2 

-(2x – 1) 2x – 1 2x - 1 -(x – 2) -(x – 2) x - 2 x < ½ : -2x + 1 = -x + 2

½

x

x = - 1 2 : 2x - 1 = -x + 2

x = 1 x > 2 : 2x - 1 = x - 2

x = -1 Not consistent.

Solution: x = -1 or x = 1 Other methods: Square both sides or graphical method.

Examples

Solve

x

 = 

2x + 1

Square both sides x 2 = (2x + 1) 2 x 2 = 4x 2 + 4x + 1 3x 2 + 4x + 1= 0 (3x + 1)(x + 1) = 0

x = -1/3 or x = - 1 Solve

x-3

 = 

3x + 1

Square both sides (x – 3) 2 = (3x + 1) 2 x 2 - 6x+ 9 = 9x 2 + 6x + 1 8x 2 + 12x – 8 = 0 2x 2 + 3x – 2 = 0 (2x -1)(x + 2) = 0 x = - 2 or x = ½

Inequalities involving modulus

x

 <

a

-a < x < a

x

 >

a

x < -a or x > a Example

x

 <

2

-2 < x < 2 -2 2

x

 >

2

x < -2 or x > 2 -2 2

Examples

Solve the inequality

2x - 1

 < 3

y = 3

2x - 1

 < 3  - 3 < 2

x

– 1 < 3  

-2 < 2x < 4

-1 < x < 2

Examples

Solve the inequality

2x - 3

  5

y = 5

2x - 5

  5  2

x

– 3  -5 or 2

x

– 3  5 

x

-1 or x

4

Examples

Solve the inequality

x + 2

 < 

3x + 1

Square both sides: (x + 2) 2 < (3x + 1) 2

  

x 2 + 4x + 4 < 9x 2 + 6x + 1 8x 2 + 2x - 3 > 0 (4x + 3)(2x – 1) > 0

x < - ¾ or x > ½

4 6

y

2 -4 -3 -2 -1 0 0 1 2 3

x

Examples

Solve the inequality

x + 2

 > 2

x

+ 1

Critical values x < -2 x

- 2

x + 2

-x - 2 x + 2

2

x

+ 1

x + 1 2x +1 when x < - 2: -x – 2 > 2x + 1

when x

- 2: x + 2 > 2x + 1

x < - 1 x < 1 Solution x < 1

-4 -3 -2 4 6

y

2 -1 0 0 -2 -4 1 2 3

x

Example

A graph has equation y = 2x +

x + 2

. Express y as a linear functions of x ( y = mx + c).

When x < -2 : y = 2x – x – 2 = x – 2

y = x - 2

When x

-2 : y = 2x + x + 2 = 3x + 2

y = 3x + 2