O - Serveurdes Congres de l`UPMC

Download Report

Transcript O - Serveurdes Congres de l`UPMC

ITQ
Valencia
2nd FEZA School
“Industrial Applications of
Zeolites, and the Relevance of
Preparing Well Defined and
Characterized Materials”
Avelino Corma
ITQ - Valencia
ITQ
Valencia
CATALYST EUROPEAN MARKET
(Billion $)
YEAR
FIELD
CHEMISTRY
(From intermediate to Fine
Chemistry)
Car, Polymer,
Refining and
Environmental
1998
0.9
2.8
2001
1.0
3.2
2005
1.3
3.7
ITQ
Valencia
STEPS IN A HETEROGENEOUS
CATALYTIC REACTION
1. Diffusion of Reactants in the Pores
2. Adsorption of Reactants on the Surface
3. Reaction of Adsorbed Products in the
Pores
4. Desorption of Products from the Surface
5. Diffusion of Products Out of Pores
ITQ
Valencia
Peculiarities of Zeolites and
Zeotypes of Interest in Catalysis
High Surface Area
Molecular dimensions of the pores:
Molecular Sieves
High adsorption capacity:
Concentration effect
Possibility for controlling number and
strength of active sites
Preactivation of molecules in the pores:
Strong electric fields, molecular
confinement.
ITQ
Valencia
Zeolite LTA Pure Silica
(ITQ-29)
Adsorption Properties of ITQ-29
compared with other zeolites
ITQ
Valencia
Sample
1-Hexene
3-
H2O
Ar
Methylpentene
(mg/g)
(mg/g) (cc/g)
(mg/g)
333K
298K
298K
87K
154
1
10
0.24
Ca-A


260
0.22
ITQ-3



0.23
ITQ-12



0.13
ITQ-29
ITQ
Valencia
ITQ-32 zeolite containing 8R and 12R
pores
Pore volume (0.16 cm3/g) and
pore apertures 3.5 x 4.3 Ǻ and
can be prepared as a nearly
pure silica zeolite and as
aluminosilicate. In the latest
case, acidic properties are
developed
Cantín et al. JACS
ITQ
Valencia
Selective Gas Adsorption by ITQ-32
6
Temperature = 25ºC
Pressure = 300 mbar
propene
Gas Adsorption (wt%)
5
4
3
2
1
propane
0
0
10
20
Time(min)
30
40
50
ITQ
Valencia
Different types of shape selectivity in
zeolite pores
ITQ
Valencia
PHENYL ACETALDEHYDE GLYCEROL
ACETAL
OH
O
H
6
OH
O
H
HO
O
USY (Si/Al=35)
60
O
Yield/%
O
1,3 dioxolane (7)
20
OH
O
O
1,3 dioxane (8)
0
0
25
50
Conversion/%
75
O
100
+ H2 O
8
2-bencyl-5-hydroxy
-1,3-dioxane
“Hyacinte”
HO
40
OH
7
2-Bencyl-4-hydroxymethyl
-1,3-dioxolane
OH
O
ITQ
Valencia
ISOMERIZATION 7 TO 8
Ph
Ph
H
O
7
H
O
Ph
+
O
HO
H
+
OH
Ph
O
+
+
OH
- H
H
+
O
O
OH
OH
HO
6.4
H
H
O
Ph
OH
OH
Cationic
Intermediate
6.4Å
7.4Å
7.4
7.4 Å
13.6
13.6Å
12.8
Catalyst
Si/Al
8
r0/Ba
104
Conversion
/%
Å
Yield/%
6.5
Å
7/8
7
8
8.3 Å
USY
35
1.80
93
58
35
1.6
Beta
15
1.45
85
57
26
2.0
MOR
10
0.08
33
28
5
5.6
MCM-41
50
1.70
36
26
10
2.6
ZSM-5
40
0.34
54
46
8
7.7
p-TSA
-
1.38
97
66
31
2.1
12.25
Å
7.4 Å
Isomerization
Intermediate
ITQ
Valencia
PARADIGMA: It is not possible during
catalytic cracking of gas oil to
produce high yields of LCO and
propylene at the same time with a
single catalyst
Gas oil
Diesel
(LCO)
Gasoline
Gases (propylene)
ITQ
Valencia
Molecular Traffic Control in ITQ-33
10 MR
(6.1 Å)
18 MR
(12.2 Å)
CRACKING
propylene
gas-oil
diesel
gasoline
CRACKING
CRACKING
propylene
propylene
ITQ
Valencia
ZEOLITE ITQ-33
A. Corma, M.J. Díaz-Cabañas, J.L. Jordá, C. Martínez, M. Moliner, NATURE (2006)
ITQ
Valencia
a
Catalytic cracking of Arabian light vacuum
gasoil at 500ºC and 60 seconds time on
stream.
Catalyst
b
Yields (%)
Molar ratio
d
=
=
=
Conversion Diesel Gasoline C3 C3 /C3 iC4 /iC4
(%)
c
USY BASED
88.3
19.5
39.5
4.4
1.3
0.1
ITQ-33 BASED
86.1
23.3
25.1
9.0
3.7
1.1
aUCS
= 2.432 nm, bConversion = diesel + gasoline + gases + coke;
c, d Boiling points [216.1ºC-359.0ºC] and [36.0ºC-216.1ºC], respectively.
A. Corma, María J. Díaz-Cabañas, José L. Jordá, C. Martínez M. Moliner, Nature (2006)
ITQ
Valencia
POSSIBILITIES OF MOLECULAR
SIEVES IN CATALYSIS
1. Acid Catalysts
2. Basic Catalysts
3. Redox Catalysts
4. Catalyst Supports – Cooperative Effects
ITQ
Valencia
Influence of Si/Al Ratio on the
Charge Density of the Zeolitic
Protons
H
Si
Si
Si
O
O
O
H
O
Si
Al
O Si
O Si
O Si
Al
Si
Si
qH = 0.40 Si/Al  7
O
O
O
O
Si
qH = 0.39 Si/Al = 3
H
H
Al
Al
Si
O
O
O
O
Si
Al
O Si
O Si
O Si
Al
O Si
O Si
O Si
qH = 0.38 Si/Al = 1.7
Al
Al
Al
O
O
O
O
Si
Al
O Si
O Si
O Si
qH = 0.37 Si/Al = 1
ITQ
Valencia
Distribution of Acid Strength
Versus Aluminium per Unit Cell
Al/U.C. (Y zeolite)
ITQ
Valencia
Zeolite framework Si/Al ratio
from 29Si MAS NMR
4
Si / Al NMR

I
Si  nAl 
n 0
4
n
4I
n 0
Si  nAl 
ITQ
Valencia
B-Zeotype and Zeolite Acid Sites:
Ionicity of the OH Bonds
H
O
H
O
B
O
Si
O
O
QOQH =
O
O
0.422
O
Al
O
O
Si
O
O
O
0.457
O
ITQ
Valencia
Influence of Acid Strength of Zeolites on
Product Distribution: Chemoselective
Friedel-Crafts Alkylations of Benzene and
Furane Derivatives by Allylic Alcohols
R
R
OH
HY
HY
weaker sites
stronger
sites
R
R
ITQ
Valencia
Cyclohexanone Oxime
Nylon-6
Caprolactam
OH
N
H
O
N
H 2SO 4
C a p ro la c ta m
2 N H 3 + H 2S O 4
(N H 4 ) 2 S O 4
ITQ
Valencia
Beckmann Rearrangement: Influence of
Acid Sites in Catalytic Behavior
RING OPENING
BECKMANN
REARRANGEMENT
Bridging Hydroxyls
POLYMERIZATION
Internal Silanols
HYDROLYSIS
OXIME
External Silanols
STRENGTH OF ACID SITES
Nitriles, others
-Caprolactam
Cyclohexanone
ITQ
Valencia
FLUORIDE MEDIA
Synthesis with OH-
Si
O
Si
O
Si
O
Si
-
O [ TE A]
t
+
Si
O
H
Synthesis with F-
Si
Si
Si
O
O
Si O
Si
O
O
+
S i; [ T E A ] F
-
t
O
Si
Si O
Si
O Si
ITQ
Valencia
Comparison of calcined zeolite
Beta (OH) and (F)
Al/uc by chemical
analysis
-80
-90
-100
-110
-120
 (ppm from TMS)
-130
Al+SiOH/uc
by NMR
minimum
SiOH/uc
1.2
1.2
0
0.3
0.3
0
1.2
2.4
9.9
0.4
-140
3.1
11.2
ITQ
Valencia
Pure Silica Zeolite Beta Free
of Connectivity Defects
 Adsorption Properties
15 g n-Hexane/100 g zeolite
< 0.1 g water/100 g zeolite
0.22 cc/g micropore volume (N2
adsorption)
ITQ
Valencia
PREPARATION OF CYCLIC ACETALS
2-(2-naphtyl)-2,4-dimetyl
1,3-dioxolane
2-(4-hydroxy-3-methoxy-phenyl)4-mtyl-1,3-diolane
O
FLAVORS
AND
FRAGRANCES
O
OH
O
O
O
Blossom Orange
O
O
O
R1
O
R2
+
O
Ethyle ethylendioxyacetal
acetate
Vanilla
R3
OH
OH
H
+
R4
R1
R2
O
O
R3
+ H 2O
R4
R 1, R 2 , R 3, R 4 = H or alkyl
O
OH
O
O
OH
Hyacinte
2-bencyl-4-hydroxymethyl
1,3-dioxolane
O
2-bencyl-5-hydroxy
1,3-dioxane
ITQ
Valencia
FRUCTONE
“Apple Scent”
O
O
O
OH
HO
1
+ H , -H 2 O
O
O
+ H 3O
EG
Fructone (91%)
EtOH
OH
Beta(13)
Fructone (90%)
60
Yield/%
80
40
USY(13)
40
20
Ácid (4%)
Ácid (2%)
0
0
0
0
+
100
80
20
O O
3
Fructone
100
60
O
2
20 min
Yield/%
O O
25
50
30
60
Time/min
75
Time/min
Fructone
90
ITQ
Valencia
PROCESS OPTIMIZATION
Reaction Conditions:
I. 7.4% of catalyst, toluene reflux.
II. 8 torr, 5% wt catalyst, T=40ºC.
I: Toluene
100
80
Yield/%
60
II: Without solvent
40
Beta (25-hydrophobic)
20
0
0
30
60
90
Time/min
120
150
II: Without solvent
Yield: 94%
Selectivity: 99%
ITQ
Valencia
OH
OH
HO
ArH
ArOH
+
RR'CH 2
OH
ArOH
TS-1
+
30% H 2O2
R
R
H
R'
OH
O +
R'
O
NH 3
R
HON
R
O
(Clerici et al.)
Versatile Titano-Silicate, TS-1, Zeolite Oxidation Catalyst with Aqueous
Hydrogen Peroxide as Oxidising Agent
INDUSTRIAL PROCESES FOR PHENOL
HYDROXYLATION WITH H2O2
ITQ
Valencia
PROCESS
RHONE POULENC
(HclO 4 H 3 PO 4)
BRICHINA ENICHEM
Fe 2+/CO 2+
(TS-1)
Phenol Conversion %
H 2O2 Yield %
5
70
10
50
25
70
Phenol Selectivity %
90
80
90
1.4
2.3
1
10
20
12
Ratio
Catechol
Hydroquinone
Tars
Tars + diphenols
x100
ITQ
Valencia
CHARACTERIZATION OF Ti
MOLECULAR SIEVES
TECHNIQUE
MOST RELEVANT INFORMATION
Chemical Analysis
XRD
Total Ti content.
Crystallinity/presence of other phases/cell
parameters
Crystal size
960 cm-1 band associated to Si-O-Ti.
960 and 1126 cm-1 associated to Si-O-Ti.
Anatase.
Broadening of the 29Si signal.
Ti coordination/extraframework Ti.
Ti dispersion.
TEM-SEM
IR
Raman
NMR
UV-Visible IR
XPS
X-ray Absorption Spectroscopy (XANES-EXAFS)
Geometry and coordination of Ti.
ITQ
Valencia
PORE RESTRICTION OF TI-SI
DURING OXIDATION OF ALKANES
WITH H2O2.
SUBSTRATE
Hexane
TON
mol/mol-Ti
2M Pentane
7.0
0.24
2,2 DM B
0.0
C Hexane
0.37
Heptane
4.5
Octane
0.50
Nonane
0.10
Reaction conditions:
H2O2 (30%) 10cc,
substrate = 10cc,
Ti-Si = 1.0g, T=323K
Time = 3h
Tatsumi et al, Chem. Commun, 1990
ITQ
Valencia
H2O2 OXIDATION WITH TI-BETA
EPOXIDATION OF OLEFINS
Selectivity
Olefin
Catalyst
1-Hexene
Ti-Beta
TS-1
Ti-Beta
TS-1
Ti-Beta
TS-1
2-methyl-2-pentene
1-methyl-1-cyclohexene
Initial reaction
5
rate, ro x10
(mol/mol.s)
3.72
8.18
6.07
2.39
4.52
0
Epoxide
H2O2
3.9
94.7
0.6
76.7
0.9
-
93
100
92
90
91
-
Reaction conditions: T=50ºC, t=2h; 33 mmol olefin;
H2O2 : olefin = 1:4 mol ratio; 23.6 g methanol; 0.2 g catalyst
ITQ
Valencia
OXIDATION OF OLEFINS ON
TS-1 AND Ti-Al BETA
OH
R1
Ti-Beta
R1
R2
C
C
R3 H2O2 R1
C
TS-1
R4 Ti-Al-Beta R2
O
C
OH
R3
C
R2
C
R4
TS-1
R3
R4
ITQ
Valencia
INFLUENCE OF THE Al CONTENT OF Ti-BETA
ON EPOXIDE SELECTIVITY: STRATEGIES FOR
THE PREPARATION OF CATALYSTS.
 Cogel
 Seeding
 Fluoride Media
ITQ
Valencia
ITQ
Valencia
Sample
BA4
INFLUENCE OF AL CONTENT IN TiBETA ON ACTIVITY AND EPOXIDE
SELECTIVITY
Synthesis Chemical Composition
TON
Epoxide
% TiO2 (mol/mol Ti h) Selectivity (%)
Method
Si/Al
OH- no
123
4.7
14.9
14.6
alkalines
BC1
cogel
300
4.7
20.8
25.9
BS1
seeding

2.5
28.6
75.4
BF1
F-

2.5
32.2
96.4
1-hexene, H2O2, CH3OH as solvent; results at 25% max. conv.
ITQ
Valencia
Pure Silica Zeolite Beta Free
of Connectivity Defects
 Adsorption Properties
15 g n-Hexane/100 g zeolite
< 0.1 g water/100 g zeolite
0.22 cc/g micropore volume (N2
adsorption)
ITQ
Valencia
Activity and Selectivity for Al-free Ti-Beta(F) and
Ti-Beta(OH) in the Epoxidation of Methyl Oleate
with H2O2
Conversion (mol%)
Catalyst
Selectivity
TiO2
Methyl Oleate H2O2 Epoxide
(% w/w)
H 2O 2
Ti-Beta(F)
2.2
81.2
96.6
95.1
55.7
Ti-Beta(OH)
3.3
27.6
97.5
80.2
17.8
Baeyer-Villiger oxidation of
ketones
ITQ
Valencia
O
O
O
+ H2O2
O
1.5 mol
1.5 mol
acetic acid anhydride
Aqueous hydrogen peroxide 70%
O
O
+ H2 O
1.5 mol
O
1.5 mol
OOH
1.5 mol
peracid
+
OH
1.5 mol
acid
1:1 molar ratio of H 2 O 2
and H 2O
O
2
OH
3 mol
O
O
O
+
1 mol
O
O
O
+
OOH
1.5 mol
1 mol
OH
Baeyer-Villiger
oxidation with peracids
ITQ
Valencia
O
O
O
RCO3H
O
RCO3H
O
O
+
O
+
O
O
O
O
ITQ
Valencia
ACETIC ACID
ACETIC ANHYDRIDE
H2O2
PERACID
KETONE
LACTONE
Acetic Acid
Acetic Acid
ACTUAL PROCESS
KETONE
LACTONE
H2O2
FUTURE
PROCESS
ITQ
Valencia
Sn-Beta Zeolite



ITQ
Valencia
ITQ
Valencia
Chemoselective Baeyer-Villiger
Oxidation with Different
Catalysts
O
O
O
O
+
O
+
O
O
O
oxidant
conv./%
Sn-Beta/H2O2
68
100
:
0
:
0
mCPBA
85
11
:
71
:
18
Ti-Beta/H2O 2
46
0
:
79[a]
:
0
9
30
:
33
:
20
MTO/H2O2
[a] rest missing to 100%
epoxide.
were openin g products of the
ITQ
Valencia
Baeyer-Villiger oxidation of
bicyclo[3.2.0]hept-2-en-6-one
using different oxidation systems
Reactant
Products
conv./%
selectivity/%
O
O
O
O
O
O
O
Sn-Beta
> 95
100a
0
0
mCPBA
> 95
29
34
37
100 a
0
0
Enzymes
a
O
MTBE as solvent at 30ºC, Reaction time, 2 h.
As 67:33 mixture of isomers
ITQ
Valencia
Sn-Beta as solid Lewis-acid catalyst
Synthesis of Melonal
O
m e lo n al
powerful, green, cucumber-like and melon odor
ITQ
Valencia
Sn-Beta as solid Lewis-acid catalyst
Synthesis by chemoselective
Baeyer-Villiger oxidation
Synthesis by a Darzens reaction
O
+
O
Cl
O
– HCl
O
O
c itra l
O
O
S n -B e ta , H 2 O 2
+ OH– E tO H
O
O
O
O
– CO2
– H C O 2H
O
m e lo na l
O
ITQ
Valencia
Classification of zeolites and similar
porous materials depending on the
dimensions of channels
Pore Diameter (Å)
30
Mesoporous
20
18 Ox
MCM-41
12 Ox
10
8 Ox
10 Ox
VPI-5
ß, Y, ž
Erionita
ZSM-5
low
medium large
Pore Size
extra large
ITQ
Valencia
SCHEMATIC REPRESENTATION
OF MESOPORES IN STEAMED
ZEOLITES
ITQ
Valencia
Mesoporosity of Y zeolite as a function
of method of dealumination
HUSY: steamed
HYD: dealuminated with SiCl4
Vmesopore (cm3/g)
0.25
15-35 Å
35-60 Å
60-100 Å
100-300 Å
0.2
0.15
0.1
0.05
0
HUSY-3
HYD-1
a0= 24.45 Å
HUSY-7
HYD-4
a0= 24.24 Å
ITQ
Valencia
K. de Jong,
Catal. Rev., Sci. Eng.
(2003)
Schematic picture of mesopores (adapted from Marcilly, 1986). The
grid denotes the zeolite framework, the black dots are framework
aluminum atoms, the open circles are aluminum atoms extracted
from the framework, and the dotted lines indicate the mesopores
ITQ
Valencia
Influence of mesoporosity on
cracking activity of Y zeolite
Gasoil
HUSY
8
k (min-1)
Unit Cell Size (Å)
24.28
24.37
24.46
k x 103 (kmol s-1 m-3)
10
n-Heptane
6
HYD
4
2
0
0
10
20
Al/u.c.
30
15
12
Unit Cell Size (Å)
24.28
24.37 24.46
HYD
9
6
HUSY
3
0
0
10
20
Al/u.c.
30
ITQ
Valencia
Taken from K. de Jong et al., Catal. Rev., Sci. Eng. (2003)
Conventional TEM image of severely steamed and
subsequently acid-leached zeolite Y (left) and slice through
the 3D-TEM reconstruction of the same crystal (right)
showing the mesopores in the crystal as lighter gray tones.
ITQ
Valencia
Taken from K. de Jong et al., Catal. Rev., Sci. Eng. (2003)
Slices through the crystallites of an acid-leached
mordenite (left) and a special hydrothermally treated
zeolite Y (HMVUSY, right) based on 3D-TEM
reconstructions, showing the mesopores in the
crystal as lighter gray tones
ITQ
Valencia
Idealized catalyst pore
structure for a cracking catalyst
Mann (1993)
ITQ
Valencia
Mesoporous mordenite
Effect of generation of mesorpores in liquid phase
alkylation of benzene with ethylene
Groen et al., J. Catal. 251 (2007) 21
ITQ
Valencia
Mesoporous Zeolite Crystals
Jacobsen et al., J. Am. Chem. Soc., 122 (2000) 7116
ITQ
Valencia
NANOCRYSTALLINE ZEOLITES
Zeolite
Crystal Size
Reference
X
30 nm
Ambs, US Pat. 4372931 (1983
L
30 – 40 nm
Meng et al., Proc. 9th Int. Zeo. Conf., 297 (1992)
Davis et al., Chem. Mater., 7, 1734 (1995)
Hydroxysodalite
37 nm
Schoeman et al., J.C.S., Chem. Commun., 994 (1993 )
A
100 nm
Schoeman et al., Zeolites, 14, 110 (1994)
Y
100 nm
Schoeman et al., Zeolites, 14, 110 (1994)
Silicalite
< 100 nm
Schoeman et al., Zeolites, 14, 557 (1994)
TS-1
< 100 nm
Schoeman et al., J.C.S., Chem. Commun., 2259 (1993)
ZSM-2
(FAU/EMT)
< 100 nm
Schoeman et al., J. Colloid Interf. Sci., 170, 449 (1995)
Beta
10 nm
Valencia et al., Stud. Surf. Sci. Catal., 105, 341 (1997)
Silicalite
18 – 100 nm
Martens et al., J. Phys. Chem. B, 102, 2633 (1998)
ITQ
Valencia
Hydrocracking of VGO on NiMo/Beta
catalysts
Characteristics of Beta zeolites
Sample
3
Si/Al
Crystal size
BET
ratio
(nm)
(m /g)
Total
Micropore
NB8a
8
10
737
0.96
0.15
NB17a
17
30-50
568
0.65
0.19
BF9b
9
200
619
0.45
0.20
aNB=
bBF=
nanocrystalline Beta zeolite
Beta zeolite synthesized in F- medium
2
Pore Volume (cm /g)
ITQ
Valencia
Hydrocracking on NiMo/Beta catalysts: Influence of
zeolite crystal size
Hydrocracking conversion as a function of reaction temperature
H C K c o n v e r s io n ( w t % )
3%NiO-12%MoO3/Beta catalysts
70
NB8
NB17
60
BF9
50
40
30
20
370
380
390
400
410
420
430
T e m p e ra tu re (ºC )
P= 3.0 Mpa, WHSV= 2 h-1, H2/feed= 1000 Nm3/m3
ITQ
Valencia
Product selectivity for NiMo/Beta
catalysts
Influence of zeolite crystal size
Product Selectivity at 50% HCK Conversion
Catalyst
Gases
Naphtha
Middle Distillates
NiMo/NB8
15.3
21.6
63.1
NiMo/NB17
15.0
23.1
61.9
NiMo/BF9
18.2
23.7
58.1
Gases= C1-C4; naphtha= C5-195ºC, middle distillates= 195-360ºC
P= 3.0 MPa, WHSV= 2 h-1, H2/feed= 1000 Nm3/m3
ITQ
Valencia
DELAMINATED AND DELAMINATED
ZEOLITES (ITQ-2)
MCM-22
Delamination
MCM-22(P)
ITQ-2
SWOLLEN MCM-22
Corma et al., NATURE (1998)
ITQ
Valencia
Polyurethanes Production
Main Steps
NH2
Polyols
HCl
2
H2N
+ CH2O
CH2
NH2
COCl2
CH2
OCN
DADPM
NCO
Polyurethanes
MDI
NH2
DADPM
Advantages:
HCl
HCHO
 High yield of amines
 Selectivity to 4,4’-DADPM
(0.6 M)
NH3+ClCH2
NH3+Cl-
A/F=2.1 (M)
T=60-100 ºC
TOS=2-3 h
Organic
Phase
Distillation
Neutralization
Aqueous
Phase
Drawbacks:
 Corrosion
 Non re-usable catalyst
 Lots of wastes
H2N
CH
NH2
4,4’-DADPM
2
H2N
Amines
H2N
CH2
2,4’-DADPM
NH2
CH2
NaCl+Amines
(wastes)
H2N
2,2’-DADPM
New Trends: Synthesis of DADPM with Solid
Acid Catalysts
ITQ
Valencia
Heterogeneous Process
Patents
Zeolites (12)
Resins (7)
NH2
USY (Bayer, Mitsui
Petrochemicals)
BEA, MWW, ZSM-5, ZSM-12,
MOR (Dow Chemicals)
Metals (5)
HCHO
Isomerization
Clays (8)
Organic
Phase
CH2
HN
T=100-200 ºC
AMINAL
A/F=3-15 (M)
T=50 ºC
TOS=1 h
Zeolite
Distillation
Drawbacks:
Aqueous
Phase
NH
SiO2-Al2O3 (8)




Low yield of amines
High A/F ratio
Catalyst deactivation
Low selectivity to 4,4’-DADPM
Condensation
Amines
Synthesis of DADPM with MCM-22:
Theoretical Study
ITQ
Valencia
Modelling
 Adsorption of the neutral condensate monomer (aminal).
 Monte Carlo simulation of diffusion within pore structure.
 Molecular dynamics simulation of adsorption within pores.
AMINAL (14.6 x 7.4 x 4.6 Å)
12 MR
Reaction can only occur at external surface of MCM-22 (MWW)
Synthesis of DADPM with Delaminated
Materials and Comparison with Zeolites
ITQ
Valencia
Chemical and Textural Properties of ITQ-18
Fixed bed experiments
100
Surface (m2 g-1)
BET
E.S.A.
Crystal(mm) Acidity (mmol pir)(1)
Brønsted
Lewis
ITQ-18
45
900
892
0.1
14
19
Nu-6
45
78
34
0.1
5
3
(1)
Calculated from the adsorbed pyridine FT-IR spectrum after evacuation at 250 ºC.
80
Amines (%)
Si/Al (M)
60
40
20
ITQ-2
ITQ-18
Beta
0
4,4‘/(2,2’+2,4’) DADPM
Sample
8
6
4
2
0
0
60
120
180
240
300
360
420
480
TOS (min)
Conditions:A/F=3.0 (M) (<1% H2O); T=150 ºC;
P=4 bar; W/F=0.4 h.
Corma, Botella, Mitchel, WO 03082803 (2003)
ITQ
Valencia
Octane Numbers of C5 and
C6 Alkanes
ITQ
Valencia
ITQ
Valencia
ITQ
Valencia
Schematic visualization showing
the effect of mesopore creation in
zeolite mordenite
Meima (1998)
ITQ
Valencia
Uptake curves for n-Hexane in
Pt/mordenite before and after acid
leaching, obtained at 523K in a
TEOM. K. De Jong (2003)
ITQ
Valencia
ITQ
Valencia
ITQ
Valencia
ITQ
Valencia
ITQ
Valencia
Viscosity Index of
Hydrocarbons
ITQ
Valencia
Dewaxing with ZSM-5 Versus
Mordenite
ITQ
Valencia
SAPO-11
ITQ
Valencia
Molar distribution of isomers formed
during isomerization of n-octane on
SAPO-11 as a function of the reaction
temperature.
Reaction conditions: 20 bar, 5.65 WHSV, H2/n-octane and 30% conversion
ITQ
Valencia
ITQ
Valencia