Transcript 発表スライド
2009/5/18 地球惑星科学連合大会 S157-007 ランダム不均質媒質中の非等方震源 におけるベクトル波エンベロープ合成 澤崎 郁・佐藤春夫・西村太志 東北大・理・地球物理 本研究の目的 高周波の直達波エンベロープの再現→強震動予測に有効 非等方震源に対する理論的なエンベロープ合成 Sato and Korn (2007): 前方散乱モデル,ベクトル波 →直達波の再現に適する.ただし2次元ランダム不均質媒質 Takemura et al. (2009): 差分計算により直達波振幅の方位 依存性を再現 本研究: • 前方散乱モデルに基づき,非等方震源の効果を組み入れた3次 元ランダム不均質媒質中での3成分エンベロープ合成を行う • 観測記録と比較し,直達波エンベロープの再現が可否を調べる 数理的背景(1) (Sato and Fehler, 1998) l(地震波長)<<a(速度揺らぎの相関距離)の場合,P波とS波の 伝播を独立に表現できる.伝播の過程でS波の極性は保存される (1) f: スカラーポテンシャル B: ベクトルポテンシャル a: P波速度 b: S波速度 (2) ポテンシャルを周波数ごとに球面波展開 (3) Uが従う放物型方程式 数理的背景(2) (Sato and Fehler, 1998) (4) 伝播方向に直交する面内の2点間で,Uの 相互相関関数のアンサンブル平均G1を定義. 後方散乱および変換散乱を無視(マルコフ 近似)した場合, G1は(5)式に従う. (5) Sato (2007) (6) (P:速度揺らぎのパワースペクトル) (7) (5)式の微分を差分化 数理的背景(3) (8) (7)式をフーリエ変換して波数領域で表現. :半径rの球面における波の伝播方向分布(角度ス ペクトル) :波が距離rからr+Drまで伝播するときの散乱角分布 モンテカルロ法より粒子の伝播方向を確率的に与え,(8)式を 繰り返し用いて震源から観測点までの粒子軌跡を求める 詳細はTakahashi et al. (2008)参照 Stochastic ray path method Williamson (1972)の拡張 ①震源から観測点までを多数 の厚さDrの球殻に区切る ②震源輻射特性の重みをつけ て粒子を放出 ③球面上で散乱角分布に従う 乱数により散乱角を定める ④最外殻(震源距離R)におけ る粒子の振動方向を求める ⑤粒子の走時の頻度分布から, MSエンベロープを作成 計算条件 Saito et al. (2005) Von-Karman型ランダム媒質を仮定 速度揺らぎ強度e=5% 速度揺らぎ相関距離a=5km k (高波数側のべきを決める量)=0.5 Dr=2km ES/EP=23.4 VP=6.0km/s VS=3.46km/s 粒子数:500,000個 内部減衰は無視 RMSエンベロープの方位依存性(10Hz,80km) SMAX/PMAX =8.04 6.31 ・A方向: P, S波とも振幅最小 ・E方向:S波振幅最大 ・G方向:P波振幅最大 4.39 3.21 E S E P 4 . 84 6.16 2.98 1.57 RMSエンベロープの周波数依存性 (E軸とG軸, 80km) SMAX/PMAX E軸 G軸 1-2Hz 7.30 1.33 2-4Hz 6.91 1.42 4-8Hz 6.44 1.51 8-16Hz 6.06 1.60 ・高周波ほどSMAX/PMAXの方位依存性が小さい ・後続波(P,S波走時の1.2倍以降)ではE軸とG軸方向の エンベロープに違いが見られない 観測記録との比較 45° MW4.3 SMNH04(45°) HRSH02(0°) 1-2Hz 1.55 1.76 1-2Hz 13.6 5.66 2-4Hz 2.83 1.69 2-4Hz 4.68 5.00 4-8Hz 2.13 1.76 4-8Hz 5.61 4.73 8-16Hz 1.44 1.55 8-16Hz 5.54 3.86 0° ・e=5%, a=5km, k=0.5 ・QP=QS=200,300,600,800 (1-2, 2-4, 4-8, 8-16Hz, Carcole and Sato, 2009) :観測(3成分和) :理論(最大振幅で規格化) RMSエンベロープの震源距離依存性 50km 100km 150km 200km S波エンベロープ(3成分和)の距離減衰(10Hz) ・最大振幅の方位依存性が震源距離と共に消失 まとめ Stochastic ray path methodによる,非等方震源に 対する地震波エンベロープ合成 •エンベロープの直達波部分の方位依存性を再現 •後続波では方位依存性見られない •高周波ほど方位依存性が見られない 節面方向から0°,45°における理論エンベロープと 観測エンベロープを比較 •P波S波の最大振幅比は理論と観測でほぼ一致 •直達波のエンベロープ形状をおおむね説明可能 謝辞:本研究では防災科学技術研究のKiK-netの強震記録を使用させてい ただきました.記して感謝いたします.