150 MeV FFAG

Download Report

Transcript 150 MeV FFAG

150 MeV FFAG
T. Adachi, M. Aiba, K. Kikuchi, K. Koba, S. Machida, Y. Mori,
R. Muramatsu, A. Muto, C. Ohomori, T. Sakae, I. Sakai,
Y. Sato, M. Sugaya, T. Shibata, A. Takagi, R. Ueno,
T. Yokoi, Y. Yonemura, M. Yoshii, M. Yoshimoto,
Y. Yuasa and Joe Nakano
- 150MeV FFAG group May 16, 2003
Nufact-j@東京都立大
Contents
150MeV FFAG Accelerator
–
–
–
–
–
Introduction
Schematic drawing
Parameter
Injection and Extruction
Schedule
Introduction - Characteristics
Fixed Field
of FFAG
flexibility, easy operation, large beam current, low power consumption
FFAG magnetic Field : B=B0(r0/r)k
Satisfying the cardinal condition, “zero–chromaticity” Scaling FFAG
High repetition rate
Super conducting magnet
Alternating Gradient Accelerator
strong focusing, down sizing
Compact size ( cf. Cyclotron)
Large Horizontal acceptance
wide aperture
Large momentum acceptance
FFAG has characteristics becoming to the manipulator of secondary
beam; PRISM, Muon Accelerator.
The design of Nutrino factory, Japanese group proposes, based on scaling FFAG ring.
Introduction – 150MeV
•
FFAG Synchrotron
FFAG was proposed by Ohkawa, Symon and Kolomensky. (~50’s)
•
An electron FFAG at MURA project.
PoP FFAG
We have no proton FFAG before the PoP (proof of principle) FFAG.
In June 2000, Our PoP FFAG accelerated the proton beam successfully.
… confirming the acceleration can be done in 1msec.
150 MeV FFAG project
The project to construct a practical machine was started.
…establishing the beam extraction in high reputation rate
The main issues in a five-year plan …
1. Extraction of the beam high repetition rate in 250Hz
2. Development of the 3dimmensional spot scanning
Feasibility Study for scaled-up FFAG Accelerator,
ex.) Construction of large FFAG ring, Fabrication of Yoke-Free Magnet and large aperture RF
system, Establishment of injection and (FAST) extraction scheme …
150MeV FFAG
– Overview
KEK-PS East Counter Hall
FFAG実験室概要図
150MeV FFAG 実験室概要図
12MeV Proton
150MeV Proton
150MeV FFAG
Cyclotron Parameters
Energy
: 12MeV
Field
: 1.69T
Current(full)
: 25μA
RF Freq.
: 50Mhz
Dee Voltage pulse width
: 160μsec@250Hz
Extraction Current : 0.5μA
(Current in Cyclotron : 2μA)
( Deflector loss
:1.5μA)
Dee Voltage with Gate pulse
80μsec
160μsec
4msec
–Parameter
150MeV FFAG Parameters
250Hz
Revolution Freq. : 1.7Mhz-4.6Mhz
Bump Decay time: 6.6μsec
Current
: 40 nA
(limited by shield thickness)
RF peak voltage: 19kV
150 MeV FFAG
– Beam simulation
• A beam simulation with final design of the magnet.
Tune vs. mean radius
Tune diagram
150 MeV FFAG
- Return Yoke Free Magnet
• “Return Yoke Free Magnet ”
The return yoke of Focusing
sector is removed.
D coil
F coil
F Sector
Shunt
D Sector
ΦF: B in F Sector
ΦD: B in D Sector
ΦS: B in Shunt
150 MeV FFAG
– The design of
• The design of the edge of
the F-sector pole
the magnet pole
• The final design of the poles
Focusing sector
halfgap
 5400
 21 
r




7 . 75
Defocusing sector
w/o patch
halfgap
 5400
 20 
r




halfgap
 4900
 39 . 9 
r

9 . 32
( r  4500 ~ 4900 )



11 . 555
 9 . 57
( r  4900 ~ 5400 )
with patch
with patch
w/o patch
Magnetic field in the center of sectors
BL
BL-F/D ratio vs. radius
A comparison of Magnetic field in
the focusing sector
Measurement of Magnetic field
7000
h alf cell
Alignment error ~0.2mm
y (m m )
6000
5000
extraction en ergy
in jection en ergy
4000
3000
-2000
-1000
0
1000
2000
x (m m )
All area of half cell, where the beam pass through, is covered
by moving the measurement bench.
Calibration of FFAG magnet
Measured field with various F & D current
F 8 8 3 .7 A
4300
D 1300 A
D 1080 A
m e a su re
@ D e fo cu s (G a u ss)
M e a su re d B z
d e sig n
D 880 A
4200
D 780A
d e v ia tio n !
4100
D 680 A
4 0 0 0 D 1 0 4 2 .3 A
Design (125MeV mode)
F: 910A / D: 780A
F 910A
3900
F 885 A
F 860 A
3800
6600
6700
6800
6900
7000
Coil
F: 50 turn
D: 5 turn
7100
M e a su re d B z
@ F o cu s (G a u ss)
Measured field magnitude (not shape) deviates
a little from design value.
Trimmed
F: 883.7A / D: 1042.3
DW
DX
C8 2D c g
8 c8 k 9 1
cd
bu
C G CCJK
83
CJ
CE
cm
ce
8 9c m
cj
81
88 C M
85
91
89
88
EQ
147
133
CM
144
1E4O5
EC
127
“Simple” Comparison to TOSCA
(after current trimming)
84
dB/B
97
cr
CR
q6
Cc 9Q
EJ
gj
el
1 4 81E4P6
150
C F cCi J
C IC K
95
22 43 08
22 33 6420
81 cf 87
228
c co p
eern
22 22 46
cj cl C P
ep
2 2 02
122311868
C 9O4 9 8
214
CT
BY
212
E
et R
cp
22 10 08
2 0 6e j
cCk L 9C3 P
204
202
ct
CcJj 9 0
1 4 71 5 3fa
21 09 08
95
EEMO
92 C Q
1 9 61 5 2
1Ffa
5A7
c n c 9q 6
gl
1Ffa
5A7
9 c4 q
1IF
94
131 139
9
0
ch
ID
CQ
126
1IB
92
85
Z0
145
CN
1H9X
e
m
H
V
eg em
ET
155
95
E1HH8T8e v
c f 8 8C L
1H8R6
cb
C9 2N
121
CH
E
Y
9
1
1
H
8
P
4
85
CR
DQ
FF
1F5C9
9 95 6
1H8N2
dp
dy
HL
94 R
dq
ey
c l 9 9c2 3oCC9Q
c96r 7c9t 9
180
1 4E1M
Cc sS
HJ
86
C Oc q 9C8TU
C M C P9 6C
1H7H8
fc
CcCcT
uU
t
CC
D
P
c
p
c
s
C O 9 98 9
CF
1H7F6
C 99N33 cCr SC9c 9uU
gn E V
1Ffc
5C9
9r 7c1cu0v0
CG
EK
ex
ct
Cc R
cc m
ds
mc o C
FF
C
1H7D4
V
R C
Dd sS
cg
1 6E1
91C90V0
HB
123
C G c k cc nn
E
K
C
T
120
c p C cUv
1 6183 6
fc
172
CM
1C0W1
fe
1G6Z2
fe
e
k
1
4
1
166
9 c8 u
Ee K
FE
k
CB
1G6e1X0z5 4
cw
CK
DY
170
101
161
fb
1G
6V4
91 C P
by
84
CW
CO
eh
cw
1G
fd
5T8
DS
cr 100
fg
F
G
d
1
x
2
9
163
89
CV
c 7s c v1 0 2
9
eg
124
94 C S C X
ci
E6X
1
5R
G
cx
cg
E1G13 49 1
DT
CW
ffP
dr
1c0w1
1 13e37i9
Ggp
co
E
dt
Ee IIi
1 0X2
163
1 12 2 3d u
EF
1
3
9
G
N
e
a
1
6
5
1C
0
2
du
C1CX0Y3
FfiI
FG
c cx y
DU
GL
DU
c xc z
D
if
CZ
DR
R 1 2d5vD X
CI
cc
id
e
e
104
1 12D25V6
fh
ib
1Cc0yY3
fg
G
hEfjzxJZ
dr
128
105
80
cl
EE
dw
v
FGhBH
DA
ht
cz
fcfe
135
GflDF
1 10C03dZ4a
F
1
2
2
1 6 11 6 7
hr
CL
GgrD
FK
1D2W7
e y F E fk
87
hp
143
a5
c vV C Y1Dd0A
fe1F6I15Ffm
6FM
9O1
1
7
C
90
fo
F
F
G
c1u0 0
h nB
6K7
F C 1Ffk
C U1C
W1
107
1 6 1fif1k6 9
ec
9190c00w
c
fi
FhZl
16G
63FI5FKM
1Cc0cxX2y 1Dda0DdbB6C
Ffi
c t 1C0CcY3DdzZdA
b c0 8
1 5 71Ffg
dDkdLl
F I6fm
FhXj
eE
wY
C TC V 1 10104Dd105DdbB1106DddC
7dDed f g hdDdi1DJj11K15 6
71F7Q3
fa 11Ffk
D12I13 41D
9 8c v c y D B 10Dd108DE119DdF110DdG
fnh
6K167 79fq
11H
h
d1m
M7
fq
d
t
1
Ffm
FMO1Ffs
V
17FS
75U7
fu
FF
J
Cc zZ
F1A51916163165Ffm
167FM
1fs
d x 1e3c3
fo
FfpH
T
179FO
a5 1 0 9
Cc1yY10Dd04A
fq
fo
fs
117FQ
73S
5fw
1D2X8
h Lf
Ffgfi
G
FFfk
IFKM
fu
7W9
cs
c1x0 31Dd0DdbB6C
fq
11Ffq
77FQ1733FS
175FU
fr
cD
DT dw E
fg
dl1D
m
fy
d8eE
C
M
d1nN8
17F
8GY
1A
dD
7S
5fw
d11D
c10C
w
E1C
C3 5
W
9 7S 1C
d19DdF
f10DdG
fu
86
g1hH
d12Ddi1I3DdJj14DkK
W01X2 1 10Dd107D
h dR
F
ga
E
C
D
fs
10DE
faA1F6FE1G6156F9O11Ffs
1883G
855egg
18Ggc
5L16Dd17nN8
E7
17F
Ffu
75FU
U17F
8GY
1
A
F
g
C
1
3
1
fy
D
W
g
a
1
ft
ge
ec
1Ffw
7W89Y1 G1Ggg
9I1
1D1O9 11 2 4 1Dd2EeyY9A
1 5155fe
13
1 7 1 fu
G
gi
1 014D10DB06C7D
E1887G
dD
eEF1d1hH
G
gi
D
hq2HhhS
s2H
9
8Ggg
199Ggk
9gm
K19G
3M
1fw
ho2H
117Ffy
89Gga
1GgA183G
231Y
3AIC
5IE
1D2V6 1a3 3
1
G
5
2
3
7
d2iI 1 1 17d8Do1DdP12DQ
u
2
3
9
h
b
1
8
c
9
7
h
2
w
I
3
F
d
s
H
Y
O
2
2
1
E
iaicie
1
9
9
h
y
G
Q
9
W
ia
C Zd1db10Dc107D1108d119Ddf100DG
U
2
0
1
7
h
w
1
h
C
go
G
2
S
0
3
q
2
0
5
u
gi
gk
2
H
Q
5
R
1
5
g
q
G
U
H
A183GC85E17G9gk
W
gtP
20HhY207HhA
F C1 6 3
I1gm
go
icie
1G
u2G
1DD
1 7 7fy
gqggsgsG
M
D
M
m
h21hO
o23hq25s227239231IA
gw
7hhkK229H
9 200Q
gy
a219H
H215H2I1H
Ddc1DD
d6m
qd11Dr12S23 4d1v2 7 E eEg
d10DE
hC
c21HeE213G
d11D
ga
m
18Ggc
Gga
A1G18GE187G199G
233IC
K
fvN
d19F
f0g1D1Dd1I1DdJj14D
235IE
37 9Fgz
7nN118DO
ddo12299DddppP
K
d15Ll1DM
gc
33M
O
I991gm
M21 32H2HU239H
1D0A5Dd1dC
gwh hahc hhe gghhi2H
3T 1 2 7 Ee A
ae e
go
G11G
K99G
g hH
G
Q
d12Ddi1I3DJj114kK
W
g97G
qg9gu
0dd8ed11Ddf111DdG
d1D
1ge
8gg
719G
Iyia
ge
O
d pP1Dq12DR22DS
G
M
K15dL
6m
23AIC
55O
hHhihkK22H
sS
Q
E W1 5fc
Ddn1DO
S201U03gy
m
235IE
37 9 1 3 4
Q
h2H
o23H
ie
uw
h231Y
19G
hq25HhhS
s27hhU
ic
7
G
Q
d1dg111hD
c dz a
1 18 831G
d5dLlm
220Ggu
2G
2H
1hhO
5gg
118G
G
gi
9 I91K1G
d1Ddn1DO
G
W
o29P0ddr1sd12Ddt24uU5 1 3 11E3G7
gw
203G
Hu239w
W
d12di113Dddj14DkkK
gy
7K29M222H
hh231Y
235IE
37 9F H
205HY07HA
23AIC
W
H
S
H
2H
Iyyiaicie
E
C
11Ggk
9gm
33M
Q
a219H
h215H
iII1H
1D16DM17N81Dd2DQ
w
20G
H
E2213G
D W1 2 9
iaicie
hhqq5hS
ss7huH
r2Dd T
HheE
G
hH
o23H
H
O
11G
55O
2G205HhY2207H
199G
go
9G
7G
hA
c211H
H
h
g
h
H
K
M
1
9
9
t
g
s
1
7
gq
C
H
O
Q
9
h
o
1qd21DdR
2
2
1
Q
2
0
1
H
gx
g
u
1
h
m
G
H
M
gw
H
U
gs
I
A
S
H
H
W
Y
IC
1
5
gy
22Ggu
ahc1he3gh2Hhhi1kkK9
IE fxe f
U20033G
gw
1 2sS3 d w
20055HhhY20077HhhA
2200G
gy
213G
15iI7
a22199H
C
H
1
2W
h
2
c
H
h
E
g
2
h
e
gv
2 2121113 5
ce
1 2 51 2 8
2 21217292123 5 7
fz
Dd uU d y
2 2 2392312323537 9gt
dv 129
CH
D VDDXY
gb
gr
1 2 6d x 1 3 3
ck
gp
gd
eu
gf
gv
CK
gn
89
gl
153
gh
gj
(measured-TOSCA)/TOSCA
1 .0 0
0 .7 5
0 .5 0
d B /B (% )
EN
EM
eEaC
1E5Y5
143
d x 1e3c3
eq
1E3G7 e m
155
EY
E E 1 4E1M
ey
dv
135
es ey
E1K4 3
135
e1u5 3
E E e k EESUe y
137
EW
e e e i e eo q1 5 1
DV
1 4 9e w
EY
e w1F5A7
EQ
E A E I1 4 3 E W
EG eo 155
Cc sS
0 .2 5
F la t field of F
0 .0 0
-0 .2 5
F la t field of D
EU
es
C E ch
ch
-0 .5 0
87
ED
gx
EA
88
-0 .7 5
ca
83
74
82
-1 .0 0
DY
C HC J
CcI j
E1S5 1
gz
8 6c i
R a d ia l en d field
ek
149
-1 4 0 -1 2 0 -1 0 0 -8 0
CA
-6 0
dy
-4 0
ed
eq
x (cm )
BV
hb
hd
eg
78 C D
-2 0
FJ
131
hf
hh
Deviation between Measurement and TOSCA
is within 0.3% in flat field area.
79
cg
cd
hj
CG
cd
EQ
hl
85
BZ
hn
hp
EG
hr
CD
83
ht
hv
hx
hz
id
if
ib
Discrepancy between any Magnets
1 .0 0
0 .7 5
0 .5 0
d B /B (% )
0 .2 5
3 d4 5
c
1a CD
A
E
e
b2
B
0 .0 0
-0 .2 5
43
aq
6
F
f
AQ
7
G
gH
8
h 9Ii1J0
44
j1K1 21 3
k LMNO
1 41o51PQ
l mn
p61q71Rr81ST
AR
95 0X
r
84 A
s92t02UV
q59c6R
c
2WX
9C
4 5 4A
Q
p4P
aw
32x42YZ
O
62A
u12vw
W
A
9C
o
c
n
5a 1yY
C
3c
9C
1c
M
9l m
c0L
72aA
2N
9C
ax
V
74av
93a A
2ac
A
y52zaa
9kKcC
8cC
A
C
C
A
1E
3ae
auU
b8B
2F
3af
d0D
6T
4A
5az2Z
A
S
AA
3
3agG
A
78ic
8C
I 8Jj
cC
A
3A
arasat
4
a5
B5bB
6H
8h
Cc
4
A3ahH
bB
bB
5
5g
C8c G
6
C
cb B
b5B
D
7
5
d
E
5
3A
8
5
F
B
e
b
9gb6 H
8c4F
bB5fbB
0
f
16iIbB
G
2J
h6B
aiI
3K
6bj B
bB
5b6B
6l m
k6bB
6
7
8
M
3E
8C
O
b4L
N
B
9
nb B
e
c
Q
0r7bB
ob6B
R
1S
pP
q7bB
b6B
2
2T
3
57bB
6X
dD
cC
18
8C
U
7yY
9aA
7cC
W
s7bB
t7
8zZ
u7bB
bB
8C
B
v7w
b4V
c
c
x7b B
bC
b0B
c
3 6J
A
aj
A3ak7K
A
3al8L
9
3M
A
am
0
A4anN
1
A4 O
ao
-0 .5 0
-0 .7 5
AP
-1 .0 0
-1 0 0
-8 0
-6 0
42
-4 0
x (cm )
-2 0
0
150 MeV FFAG
- Measurements of magnetic field.
Measurements of magnetic field with hole probe.
Discrepancy (ΔB/B)
Magnetic Field (Bz)
20000
ΔB/B (%)
15000
Bz (Gauss)
10000
5000
0
-5000
-10000
-15000
-120
-100
-80
-60
-40
-20
0
20
X (cm)
Y
Y=-35~+45cm 5cm step
X
3.0
2.5
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-2.5
-3.0
-120 -100 -80
-60 -40
X (cm)
-20
0
20
The discrepancy between any two magnets
is 0.3% at most. The alignment error of
hole probe explained that discrepancy.
FFAG Magnet 設置
三角測量による設置
精度10秒のトランシットを用いた。
三角一辺の長さ ~2m
10秒=0.000048
∴ 0.1mm程度の設置精度
ビームライン中心線
CODが要求する0.5mmの設
置精度に対し、約0.2mm程度
の精度で設置を完了した。
サイクロトロン&トランスポート
サイクロトロン
•250Hzパルス運転の成功
•最大取り出し電流0.5μA
•(サイクロ内部1.5μA)
トランスポート
(ステアリング+トリプレット四十極電磁
石)*2 のシステム
ビームトランスポートの調整中
Beam Injection Study
10MeV(137MeV/c) proton Injection Study
with Magnetic and Electric Septum
Electric Septum
Magnetic Septum
60deg
30mm
22mm
450mm
Magnetic field 1T for 10MeV proton
ρ~450mm
E=35kV/cm
Deflecting angle ~80mrad
Distance between electrode 22mm
Beam Injection Study
~25nA
60nA
30nA
~25nA
With Magnetic and Electric
Septum
Momentum ~137MeV/c particle
25th April 2003
First circular beam was measured
in 150MeV-FFAG Synchrotron Accelerator.
150MeV FFAG
fiscal 2003
4
– Schedule
FFA G C om m issioning
入射コミッショニング
5
バンプ調整
R F システム、ビーム加速調整
6
7
inspection by the government
Starting Experim ent
取り出し調整
Summary
• We finish the construction of 150 MeV FFAG
Accelerator, and starting the beam study.
• We observed the circulating beam of one turn with
Faraday Cup with Magnetic and Electric Septum.
For the next …..
• We are now studying the injection beam orbit in detail,
to confirm the FFAG ring satisfying our design.
• After installing a set of bump magnets, beam
acceleration will be started.