ppt形式 2.4MB

Download Report

Transcript ppt形式 2.4MB

多元物質科学研究所
微粒子合成化学・講義
http://res.tagen.tohoku.ac.jp/mura/kogi/
E-mail: [email protected]
村松淳司
多元物質科学研究所
自動車触媒
排ガス規制 -ガソリン車
排ガス規制 -ディーゼル大型
ガソリン車の型式と燃料蒸気圧による日
間蒸発ロスの違い
燃料中の硫黄分とガソリン車のNOx排出
量との関係(10・15モード)
*ストイキオ=理論空燃費:ガソリン1gに対して、空気14gの割合で燃やすのがもっとも理想とされて
いる比率。ストイキとも言う。
今後の自動車排ガス対策
中央環境審議会「今後の自動車排出ガス低減対策のあり方について(第5次答申)」/2002年4月/抜粋
I.ディーゼル自動車の排出ガス低減対策(新長期目標)
(目標値)
○浮遊粒子状物質(SPM)、二酸化窒素(NO2)等の大気汚染状況が厳しい中、ディーゼル自動車から
排出される粒子状物質の健康リスクが高いことが明らかになってきたことから、窒素酸化物(NOx)等を
低減しつつ、粒子状物質(PM)に重点をおいた対策を行う。特に、重量車(車両総重量3.5t超)は、PMを
より大幅に低減する。
なお、一酸化炭素(CO)については、環境基準を達成していること等から、新短期規制値に据え置く。
○新長期目標以降の自動車排出ガス低減対策(新たな低減目標)を検討する。その際、軽油中の硫黄
分の低減等、燃料対策も併せて検討する。
(備考)達成時期については、「平成17年末まで」と第四次答申(平成12年11月)において答申されている。
II.ガソリン自動車の排出ガス低減対策(新長期目標)
(目標値)
○排出ガス低減対策と二酸化炭素低減対策の両立に配慮しつつ、NOx等を低減する。
なお、一酸化炭素(CO)については、環境基準を達成していること等から、新短期規制値に据え置く。
○新長期目標以降の自動車排出ガス低減対策(新たな低減目標)を検討する。その際、ガソリン中の硫
黄分の低減等、燃料対策も併せて検討する。
(達成時期)
○乗用車等は平成17年末までとする。但し、軽貨物車は、平成19年末までとする。
(蒸発ガス対策)
○燃料蒸発ガスはSPMや光化学オキシダント等の前駆物質であり、特にSPMの環境基準達成に向け
、自動車対策と固定発生源対策をあわせた総合的な対策の検討を進めていくことが必要である。
(その他)
○低排出ガス認定制度等により、引き続き、低排出ガス自動車の普及を図ることが適当である。
自動車触媒
Rh は少量で三成分の浄化に高活性を示す
Pt, Pd を比較すると、Pd の方が浄化特性に優れている
⇒ しかしながら、旧来、Pd より Pt の方を Rh と組合せて用いてきた
N.E.ケムキャットのサイトから:
http://www.ne-chemcat.co.jp/business/auto/threeway.html
NOxの還元には,当然還元領域(酸素の少ない領域)が好都合
酸化反応であるHC,COの燃焼にとっては,不都合で除去率が低くなる
HC,COの酸化にとって好都合の酸素の多い領域では,NOxの除去が
うまくできない
理論空燃比14.6の前後(僅かに開いた窓:ウインドウと呼ばれる)では,
NOx,HC,COすべてが,約90%の除去率で浄化される
空燃比
助触媒: 触媒主成分に少量加えることで、活性、選択性あるいは
寿命を向上させる作用を持つ
- 酸素が多いと酸素を吸蔵
⇒ 排ガス中の酸素が減る
- 酸素が少ないと酸素を放出
⇒ 排ガス中の酸素が増える
N.E.ケムキャットのサイトから:
http://www.ne-chemcat.co.jp/business/auto/threeway.html
Pt粒子
三元触媒システム トヨタ自動車 1977
当時、世界一厳しい53年排出ガス規制に対応するため同時に酸化・還元処理する三元触媒装置。1977年、
EFI方式のM-EU型エンジンに採用されクラウンに搭載された量産システムとしては世界初。
三元触媒式の排出ガス浄化装置は、電子燃料噴射(EFI)エンジンに装備され、CO、HC、NOxの3成分を一つの
触媒で同時に酸化・還元処理する。そのためには、燃料噴射量を空気量に応じて常に理論空燃比(重量比で
14.7)に制御する必要があり、三元触媒に入る排出ガス中の酸素量をO2センサーで検知し、酸素量に応じた燃
料噴射量をコンピュータによって算出、制御する。
当時の三元触媒は白金ロジウム系を使用したペレット タイプで、直径2~4mmの粒状のセラミックスの表面に
活性成分が担持され、1gあたりの表面積は50~150にm^2達した。多数の粒状セラミックスは金属ケース(触媒
コンバーター)に収められ、エキゾーストマニホールドとマフラーの中間の排気管に装備された。
市販ガソリン車に装着されている排ガス浄化触媒の金属組成と比表面積
触媒活性試験結果
自動車触媒のリサイクル
Pt
同和鉱業の取り組み



同和鉱業は、これまで廃棄物とされていたものを資源と見な
し、これをリサイクル(再資源化)することにより、世界に偏在す
る希少金属の安定供給をはかり、循環型社会の実現をめざし
て金属リサイクル事業に積極的に取り組んでいます。
1991年には、自動車用廃触媒からのPt、Pd、Rhの回収を目
的とする㈱日本ピージーエムを田中貴金属工業㈱との合弁で
設立しました。現在、廃触媒処理での国内シェアは、ほぼ
100%、世界シェアでは25%を占めています。今後海外集荷を
強化、増強しリサイクルを進めていきます。
また、1995 年に、小坂製錬所における鉛バッテリー処理と、同
和ハイテックにおける液晶製造工程のスクラップからのIn 回収
事業を開始しました。さらに、1998 年には、Ga、Ge のリサイク
ルも事業化しています。
同和鉱業の取り組み

小坂製錬所で現在処理し
ている使用済み製品等は、
従来からの故銅に加え、
フィルム、酸化銀電池、電
子基板、GaAs半導体、携
帯電話と多岐にわたり、処
理原料に占める二次原料
の比率は、右のグラフで示
す通りPd90%、Pb20%、
Ag15%、Cu12%となってい
ます。
多元物質科学研究所
光触媒
2
エネルギーに係る課題と対応
安定なエネルギー供給性の確保
地球温暖化の主要因である二酸化炭素の排出抑制,固定化
平成19年度 エネルギー白書(経済産業省)
クリーンかつ地域的な偏りが少ないエネルギー
水素エネルギー
燃料電池の燃料(副生成物は水)
二酸化炭素との反応による
炭化水素の合成
Ex) F. Solymosi, A. Erdöhelyi, T. Bánsági,
J. Catal., 68, 1981, 371.
水素製造方法
化石燃料の水性ガス反応
水の電気分解
太陽光発電
副生成物なし
光(一次エネルギー)から
電力(二次エネルギー)への
直接変換
(数100 ˚C以上の熱供給が必要)
(電力供給が必要)
光触媒を用いた水や有機化合物の分解(常温、常圧)
光エネルギーの化学エネルギーへの変換技術
水素製造と太陽電池,どちらの応用も可能な材料
TiO2光触媒による水素生成の発見
3
本多-藤嶋効果 : 光電気化学的な水分解による水素生成
A. Fujishima, K. Honda, Nature, 238, 1972, 37.
V
H2
可視領域
紫外領域
O2
hu
Pt
相対エネルギー強度
2.0
1.0
地球に到達する
太陽放射エネルギー
TiO2
化学的に安定・豊富な資源量
0
200
400
600
800
1000
波長 nm
TiO2単独では水素生成速度が極めて低い.
光触媒作用の発現が約410 nmよりも短い波長の紫外光を照射
した場合に限定され,太陽光の利用に制限がある.
実用化を考慮すると,固定化(薄膜化)が望ましい.
光触媒の特異性

電子と正孔の生成
– 光励起はバルクの役割

電子+プロトン→水素生成
– 水素生成は表面触媒機能

表面機能とバルク機能の両方の制
御が必要
本多・藤嶋効果
水→水素発生
解説
光利用効率を上げることが必須
1.光触媒とはなにか



触媒は「それ自身は変化することなく化学反
応を促進する物質」と定義
光触媒はこれに「光照射下で」という条件が
付加
身近に見られる光触媒の例: 植物の光合成
で重要な働きをしている葉緑素(クロロフィ
ル)
図1 植物の光合成も一種の光触媒反応
光触媒の用途別マスコミ発表件数










空気清浄機、脱臭フィルター等 52
外壁、外装、建材、テント等の防汚 36
抗菌・脱臭用繊維および紙 15
蛍光ランプ、街路灯関連の防汚 14
浄水・活水器 14
防汚・抗菌タイル(内装、外装) 10
道路、コンクリート、セメント 10
キッチン関連の防汚・抗菌 10
自動車の防汚コーティング 3
防藻 3
光触媒


残念ながら光合成をできる光触媒を人類は
まだ作り出していない。
光によって機能する半導体素子(デバイス)
–
–
–
–
太陽電池、光ダイオード、光トランジスターなど
光→電気変換、光→電気信号制御
光→化学反応制御
半導体光触媒の一般的機能: 脱臭、抗菌・殺菌、
防汚、有害物質の除去、ガラス・鏡の曇り防止、
など
図2 光触媒を応用した商品の例
(a)空気浄化用疑似観葉植物、(b)蛍光灯、(c)自動車サイドミラー用水滴
防止フィルム、(d)自動車のコーティング、
(e)光触媒をコートしたテント(右側は未処理)、(f)光触媒コートしたビルの
壁面、(g)街灯のカバー、(h)コップ
光
触
媒
特
許
件
数
の
推
移
光触媒特許数(物質別)
2.光によって起こる反応



光化学反応
光触媒によって起こる
反応(光触媒反応)も一
種の光化学反応
従来の光化学反応とは
メカニズムが違う
3.光のエネルギー




光化学反応でも光触媒反応でもすべての光
が使えるわけではない
あるエネルギー以上の光だけしか使えない
光のエネルギーは波長が短いほど高くなる
光のエネルギー(eV, 電子ボルト)
=(プランクの定数)×(光の速度)÷波長
(nm、ナノメートル)
=1240÷波長(nm)
図4 光のエネルギーと波長
太陽光
可視光領域
4.半導体の光励起と光触媒反応

二酸化チタン(TiO2、チタニア)
– n型半導体に属す
– 電子によって電気を通すタイプの半導体
– 酸化チタンにあるエネルギー以上の光が当たると、
酸化チタンを構成している電子(価電子帯電子)が
励起して、上のレベル(伝導帯)の電子になる
– これが半導体の光励起状態
– 価電子帯(下のレベル)と伝導帯のエネルギー差を
バンドギャップエネルギーという
– 酸化チタン(アナタース型)=3.2eV (=約390nm)
図5 光による半導体のバンドギャップ励起
5.本多―藤嶋効果と光触媒
図6 (a)光電気化学セル、(b)光化学ダイオード
(c)Pt担持光触媒
光触媒酸化反応
光触媒による色素(有機物質)の分解の様子.光触媒を塗布した板の上に,濃い青色
の色素を塗り重ね,その上にガラス板(マスク)を置いて光を照射した.上の写真の上
の方にある青い板が,色素を塗った板で,全体に青色が薄くなり,色素が光触媒作
用によって酸化分解されたことを示している.用いたマスク(写真の下の方の透明な
板)には黒いインクで「光」と書かれており,文字の部分だけは光が通らない.した
がって,色素を塗った板上では「光」という文字の部分だけ元の色素の濃い青色が
残っている.
光誘起超親水化現象
普通のガラスに水を垂らすと,ガラス表面はそんなに親水的でないので水が
はじかれ,水は滴を作って流れ落ちる(写真右).しかし,ガラス表面に光触媒
を塗布し,光を照射すると表面が超親水性を持つので,水を垂らすと水は全
面に膜状に広がる(写真左).
図7 酸化チタン薄膜についた水滴は光照射に
よって一様な水膜となる
表 1 金属酸化物半導体
半導体
バ ンドギ ャップ
半導体
バ ンドギ ャップ
F e 2O 3
2 .2
T iO 2 (ru tile )
3 .0
C u 2O
2 .2
T iO 2 (a n a ta s e )
3 .2
In 2 O 3
2 .5
S rT iO 3
3 .2
WO3
2 .7
ZnO
< 3 .3
F e 2 T iO 3
< 2 .8
B a T iO 3
3 .3
PbO
2 .8
C a T iO 3
3 .4
V 2O 5
2 .8
KTaO 3
3 .5
F e T iO 3
2 .8
SnO 2
3 .6
B i2O 3
2 .8
Z rO 2
5 .0
N b 2O 3
3 .0
表 2 単体半導体および金属酸化物半導体以外の化合物半導体
(指 定 の な い も の は n,p両 型 あ り )
半導体
バ ンドギ ャップ
Si
1 .1
GaAs
1 .4
CdSe, n
1 .7
GaP
2 .2 5
CdS, n
2 .4
ZnS, n
3 .5
図 各酸化物、硫化物のバンドギャップ
自動車由来有害大気汚染物質の光
分解除去
低濃度NOxの分解除去から、アルデヒド類、BTX、多環芳香族炭化水
素、粒子状物質中の有機分など各種の有害大気汚染物質の除去へ。
光触媒の固定化・性能向上が必要
人工光合成システムで可視光による水の完全分解に世界で初めて成功
(産総研・光反応制御研究センター)
光触媒の律速段階
(1) 電子による還元反応(素反応)
(2) 正孔による酸化反応(素反応)
(3) (1)および(2)の生成物が変化する反
応(生成物がすぐに脱離する場合はこの
過程はない。また、複数の素反応になる
場合もあり得る。いずれも熱反応であ
る。)
図13 TiO2(○)およびPt/TiO2(△)によ
る硝酸銀
水溶液からの光酸素発生活性の水素還
元温度依存。
RuO2/TiO2(●)は還元なし。TiO2:メルク
anatase、
Pt量:1wt%。
水の光分解 素反応







(1) 光励起
チタニア > e + hole
(2) H+ + e → H ads. (ヒドリド)
(3) 2 H ads. → H2 ads.
(4) H 2 ads. → H2 (脱離)
(5) OH- + hole → O ads. (オキシド)
(6) 2 O ads. → O2 ads.
(7) O2 ads. → O2 (脱離)
どこが、律速段階か? PtやRuO2などを添加して水
素生成速度があがるとすれば、水素生成が律速
だ。つまり(2)が律速段階。
多元物質科学研究所
可視光化への挑戦
10
問題点 : 吸収可能な波長が紫外光領域に限定
解決法 : 狭バンドギャップ化による可視光応答化
還元処理による酸素欠損の積極的導入
Ex) M. Kitano, M. Takeuchi, M. Matsuoka, J. M. Thomas, M. Anpo, Chem. Lett., 34, 2005, 616.
ドーピングによる不純物準位の形成
Ex) Nドープ:R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 296, 2001, 269.
Sドープ:T. Umebayashi, T. Yamaki, H. Itoh, K. Asai, Appl. Phys. Lett., 81, 2002, 454.
[当研究室]J. Cuya, N. Sato, K. Yamamoto, A. Muramatsu, K. Aoki, Y. Taga,
Thermochimica Acta, 410, 2004, 27.
Sドープ:
格子酸素と同原子価置換
電荷バランスの維持が可能
Quantum efficiency
Since band-gap of TiO2 is near 3.0eV(≒ 400nm), only
ultraviolet light is absorbed to give photocatalytic activity.
Ultraviolet
Visible
Infrared
Intensity (a.u)
1. Quantum efficiency was improved by N doping into TiO2 by
sputtering method.
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki,Y. Taga : Science, 293 (2001) 269.
2. Quantum efficiency was improved by S doping into TiO2 by
sputtering method.
M. Ziolock, J. Kujawa, O. Saur, J. C. Lavalley : J. Mol. Cat., A: Chem., 97 (1995) 49.
Red-shift by S or N doping
Photocatalytic activity of S-doped TiO2 was gradually
reduced,
because
of oxidation
of S to be1600
lost.
2000
1200
800
400
0
Wavelength
H. Gerischer : J. Electroanal.
Chem., 82(nm)
(1977) 133.
A. J. Bard and M. S. Wrighton
: J. Electrochem.
Soc., 124 (1977) 1706.
Spectrum
of Sun Light
53
ヘテロ原子の導入

豊田中央研究所のグループ
– 窒素をドープすることによる可視光化を実現

硫黄ドープによってバンドギャップの可視光化が実
現できる
– 実際にTiO2のOの代わりにSを入れることは困難
R.Asahi, T.Morikawa, T.Ohwaki, K.Aoki, and Y. Taga, Science, 293, 269 (2001).
ヘテロ原子の導入 ~最近の研究

Umebayashiら
– 二硫化チタン(TiS2)を空気中500℃あるいは600℃でアニールするこ
とにより、硫黄ドープした酸化チタンを合成
– この材料の可視光領域での吸収は必ずしも多くなく、部分硫化は失
敗したかに見えた。
– しかしながら実際にメチレンブルーの光酸化分解反応に極めて高い
活性を示すことが、同じ著者らによって報告された。
T.Umebayashi T.Yamaki, S.Tanaka, and K.Asai, Chem. Lett., 32, 330 (2003).
ヘテロ原子の導入 ~最近の研究

Ohnoら
– チタンイソプロポキシドをチオ尿素とともにエタノール中で1時間混合し、
その後エタノールを蒸発させる
– 得られた固体を焼き固めることにより硫黄ドープ酸化チタンを得た
ヘテロ原子の導入 ~最近の研究
– 温度は400℃~700℃の範囲で、3~10時間行った
– このUVスペクトルを見ると、500 ~600nmの可視光領域にも吸収を
もったスペクトルが得られた
– X線回折結果から、格子酸素は700℃以上で完全にSに代わるとして
いる。
T.Ohno, F.Tanigawa, K.Fujihara, S.Izumi, and M.Matsumura, J. Photochem.
Photobiol., A:127, 107 (1999).
T.Ohno, Y.Masaki, S.Hirayama, and M.Matsumura, J. Catal., 204, 163
(2001).
T.Ohno, T.Mitsui, and M.Matsumura, Chem. Lett., 32, 364 (2003).
硫黄ドープの問題




問題は果たして格子酸素を硫黄に替えることが光溶解安定性を
含めた光触媒実用化上の問題解決につながるのか
水の光分解の場合、触媒表面ではプロトンが電子を貰って水素
に、水酸化物イオンが電子を離して酸素になるが、硫化硫黄構
造の格子硫黄が反応に入ってしまうと、いわゆる光溶解という
現象が起こる
アナタースかルチル構造を保持したまま酸素と硫黄が置換した
方がいいのかもしれない
硫化チタン構造をとらない方が良いのではないか
TiO2の部分硫化

アナタース構造をとったまま、酸素と硫黄を置換さ
せる
可視光化

最適部分硫化条件の探索

部分硫化TiO2の吸収スペクトル
100
ST01
200°C
吸収スペクトル
150°C
80
250°C
100°C
300°C
%R
60
40
350°C
20
400°C
500℃
450°C
0
200
300
400
500
Wave length, nm
600
700
処理
温度
外観
未処理
白色
TiO2(a)のみ
505
4.0
100℃
白色
TiO2(a)のみ
745
8.4
150℃
白色
TiO2(a)のみ
780
6.8
200℃
ベージュ
TiO2(a)のみ
743
8.8
250℃
薄茶色
TiO2(a)のみ
833
9.5
300℃
薄茶色
TiO2(a)のみ
637
8.5
350℃
黄土色
TiO2(a)のみ
516
4.3
400℃
焦茶色
TiO2(a)のみ
595
0.0
450℃
黒色
TiO2(a)+TiS2
93
0.0
500℃
黒色
TiO2(a)+TiS2
109
0.0
結晶構造
紫外線
光触媒性能
可視光
光触媒性能