Transcript 多変量解析 第2回ゼミ
多変量解析
第4章 単回帰分析
新納浩幸
単回帰分析とは?
x,yについて直線的な
関係を前提とした解析
説明変数が1つの物
→単回帰分析
右図は単回帰分析として
扱えるデータの一例
図1 成分Aの含有量xと
収率yのデータと散布図
解析の流れ
1.
2.
3.
4.
5.
単回帰モデルを想定、回帰母数を
最小2乗法より推定
寄与率と自由度調整済寄与率より
回帰式の評価
回帰係数の検定と推定
残差とテコ比の検討
得られた回帰式からの予測
1.回帰式の推定
取得できるデータには
ばらつきがある。
近似直線を求める必要有り
(最小2乗法を用いる)
単回帰モデル式
図2 単回帰モデルの考え方
ˆ 0 1x i , i ~ N (0, 2 )
y
右上図は単回帰モデルを
示している
・・・式(1)
最小2乗法(1)
最小2乗法とは・・・
実測値と予測値の差(残
差)の平方和が最小になる
パラメータを求めること
予測値
yˆi ˆ0 ˆ1xi
残差
ei yi yˆi yi (ˆ0 ˆ1xi )
図3 残差と単回帰モデル
最小2乗法(2)
実際に解くために・・・
残差平方和から正規方程式を導く
正規方程式を解いてパラメータを得る
残差平方和
n
n
2
ˆ
ˆ
Se e {yi (0 1xi )}
i 1
2
i
i 1
最小2乗法(3)
パラメータの偏微分
正規方程式
n
Se
2 ( yi ˆ0 ˆ1 xi ) 0
ˆ0
i 1
n
Se
2 xi ( yi ˆ0 ˆ1 xi ) 0
ˆ1
i 1
ˆ0n ˆ1 xi yi
2
ˆ
ˆ
0 xi 1 xi xi yi
(上記方程式より単回帰式の推定式を得る)
最小2乗法(4)
正規方程式より求まるパラメータ導出式
x
y
ˆ0 y ˆ1x
(ただし、 x , y )
i
ˆ1
( x x )( y y) S
S
(x x)
i
i
xy
2
i
n
xx
単回帰式の推定式
yˆ ˆ0 ˆ1x y ˆ1 ( x x )
i
n
S xy ( xi x )( yi y)
(ただし、
)
2
S xx ( xi x )
2.寄与率と自由度調整済寄与率(1)
求めた単回帰式の推定式
→有用かどうかを評価しなければならない
評価指標の寄与率R2を求める
寄与率とは・・・・
全変動のうち回帰によって説明できる変動の割合
計算結果が1に近いほど良い
2.寄与率と自由度調整済寄与率(2)
寄与率を求めるのに必要なパラメータ
目的変数yの平方和(yの全変動)
推定した回帰式から求まる回帰による平方和
この2つのパラメータの割合によって求められる。
yの平方和を求める
n
S yy ( yi y)2
i 1
S yy { yi (ˆ0 ˆ1 xi )}2 {(ˆ0 ˆ1 xi ) yi }2
S yy ˆ1S xy Se
・・・式(2)
・・・式(3)
2.寄与率と自由度調整済寄与率(3)
回帰式より求める平方和
2
S
SR {(ˆ0 ˆ1xi ) y} ˆ1Sxy ( xy )
Sxx
2
寄与率
Se
SR
R
1
S yy
S yy
2
・・・式(5)
・・・式(4)
2.寄与率と自由度調整済寄与率(4)
各平方和にはそれぞれ自由度が対応している
→自由度を調整した寄与率も必要になる
それぞれの平方和に対する自由度
Syy :φT = n-1
SR :φR = 1
Se :φe = n-2
2.寄与率と自由度調整済寄与率(5)
自由度を調整した寄与率:自由度調整済寄与率
Se e
R 1
S yy T
*2
・・・式(6)
この式は重回帰分析の時も有用
3.回帰係数の検定と推定(1)
求められた回帰式のパラメータ
̂1 は統計量
→確率分布から回帰係数の検定と推定を行う
母分散σ2の推定量
Se
ˆ Ve
e n 2
2
Se
・・・式(7)
3.回帰係数の検定と推定(2)
回帰係数 ̂1の確率分布
2
ˆ
1 ~ N 1,
S xx
・・・式(8)
確率分布の標準化
ˆ1 1
2
u
~
N
(
0
,
1
)
2 S xx
・・・式(9)
3.回帰係数の検定と推定(3)
式(9)の標準式に式(7)を代入
ˆ1 1
t
~ t (e ) (e n 2)
Ve Sxx
この式を用いて検定を行う
→帰無仮説、対立仮説を立てる
帰無仮説 H0: 0
1
対立仮説 H1: 1 0
・・・式(10)
3.回帰係数の検定と推定(4)
検定統計量
̂1
t0
Ve S xx
・・・式(11)
計算結果が|t0|≧t(φe,α)の時
有意水準αで有意である
帰無仮説H0は棄却される
3.回帰係数の検定と推定(5)
分散比
ˆ12
SR
F0 t
F (1,e ; )
Ve Sxx Ve
2
0
β1の信頼率95%の信頼区間
Ve
ˆ
1 t (e ,0.05)
S xx
4.残差とテコ比の検討(1)
各サンプルにおける残差が推定回帰直線と比べ
異常に大きい(または小さい)
→何らかの問題がある可能性
残差の標準化:標準化残差
ek
e'k
Ve
標準正規分布N(0,12)に近似的に従う
4.残差とテコ比の検討(2)
各データが予測値に対しての影響力を測る
→テコ比を求める
第kサンプルの予測値を求める
yˆ k y ˆ1 ( xi x )
hk1 y1 hk 2 y2 hkk yk hkn yn
このときの係数hkkをテコ比と呼ぶ
4.残差とテコ比の検討(3)
テコ比の性質
n
h
k 1
kk
1 1 2( (説明変数の個数) 1)
1
hkk 1
n
5.得られた回帰式の利用
回帰式の推定量の確率分布
2
1
(
x
x
)
2
ˆ0 ˆ1x ~ N ˆ0 ˆ1x,
S xx
n
母回帰の区間推定、予測区画を構成できる