Transcript 画像工学
画像工学 2012年10月31日 担当教員 北川 輝彦 前回のおさらい 3.1 ディジタル画像の生成 • 離散化するプロセス アナログ(連続)画像を 標本化(sampling) ⇒ 量子化(quantization) 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 標本化(sampling): 等間隔の格子で画像を分割 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 標本化 (sampling): 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 標本化(sampling): 等間隔の格子で画像を分割 ⇒分割された小区画:標本区画 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 標本化 (sampling): 正方形一つ一つが標本区画 画素、ピクセルとも …ペル? (初めて聞いた。 動画像で使われるとか) 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス アナログ(連続)画像を 標本化(sampling) ⇒ 量子化(quantization) 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 量子化(quantizatiion): 標本区画を数値化 代表濃淡値に置き換える 平均濃淡値 中心の濃淡値 最大濃淡値 最小濃淡値 …etc 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 量子化(quantizatiion): 22 176 200 128 0 133 190 210 0 23 190 220 0 20 180 200 0 21 193 144 標本区画を数値化 画素数 M ライン数 N M画素×Nラインの画像 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 量子化(quantizatiion): 22 176 200 128 0 133 190 210 0 23 190 220 0 20 180 200 0 21 193 144 標本区画を数値化 代表濃淡値に置き換える 濃淡をどれだけ 細かく分割するか ⇒階調値(8bitだの16bit) 3.1 ディジタル画像の生成 3.1 ディジタル画像の生成 • 離散化するプロセス 量子化(quantizatiion): 22 176 200 128 0 133 190 210 0 23 190 220 0 20 180 200 0 21 193 144 画素数、ライン数、 階調値 画像解像度 3.1 ディジタル画像の生成 3.2.1 空間密度と空間周波数 • 空間解像度 ⇒ 空間密度 と 光学系解像度 に関係 3.2.1 空間密度と空間周波数 3.2.1 空間密度と空間周波数 • 空間密度 画像の粗密。 ディジタル画像においては 単位面積辺りの画素数。 3.2.1 空間密度と空間周波数 3.2.1 空間密度と空間周波数 • 空間周波数 画像情報:明から暗、暗から明へ 輝度(濃淡値)の変動 ⇒ 無ければ単一の色の板に過ぎない 空間周波数:反復度合いのこと 3.2.1 空間密度と空間周波数 3.2.1 空間密度と空間周波数 • 空間周波数 標本化の格子の繰り返しの空間周波数で 決定 ⇒ 標本化周波数 3.2.1 空間密度と空間周波数 3.2.1 空間密度と空間周波数 • 標本化周波数 空間的細部をどれほどまで表現したいか ⇒ 標本化定理 3.2.1 空間密度と空間周波数 3.2.1 空間密度と空間周波数 • 標本化定理 画像に含まれる最高空間周波数の倍の周 波数にて画像を標本化 …できれば全ての情報を画像として表現で きるが、大抵はそこまで必要無い。 3.2.1 空間密度と空間周波数 3.2.1 空間密度と空間周波数 • 標本化定理 必要な標本化周波数を満たす性能の カメラシステムを選択 オーバーサンプリング 無駄に大きな容量 計算コストが大きい とは言え、 3.2.1 空間密度と空間周波数 3.2.1 空間密度と空間周波数 • 標本化定理 ダウンサンプリングしすぎて、 情報が潰れては意味は無いが。 エリアシング、チェッカーボード効果の問題 3.2.1 空間密度と空間周波数 3.2.2 空間エリアシング • 空間エリアシング: 画像細部の空間周波数の2倍以下で 標本化したときに発生しうる現象 3.2.2 空間エリアシング 3.2.2 空間エリアシング • 空間エリアシング: 画像細部の空間周波数の2倍以下で 標本化したときに発生しうる現象 情報を失うだけではなく、 新たな望まない情報が発生することも。 ⇒偽信号(alias) 3.2.2 空間エリアシング 3.2.2 空間エリアシング • 空間エリアシングが連続的に発生 ⇒ モアレパターン(縞状の斑紋) 現画像には存在しない構造物 3.2.2 空間エリアシング 3.3 輝度分解能 • 輝度分解能の低下 ⇒ 擬似輪郭が発生 人間の一般的な視覚:8[bit]で十分 …が、医療用など特殊用途では12[bit]が 用いられることも。 3.3 輝度分解能 3.4 カラー画像 • 基本はグレースケール画像と同じ ・標本化 ・量子化 ・空間解像度 ・輝度分解能 これらを用いて表現 3.4 カラー画像 3.4 カラー画像 • 基本はグレースケール画像と同じ 量子化時 単一輝度 ⇒ 3つの色成分で表現 3.4 カラー画像 3.4 カラー画像 • 3つの色成分 …3原色 何故3原色なのか、思い出してみよう 3.4 カラー画像 3.4 カラー画像 • 3つの色成分 …3原色 何故3原色なのか、思い出してみよう 3.4 カラー画像 3.4 カラー画像 • 3原色は大きく分けて2種類 ・ 加法混色性 ・ 減法混色性 3.4 カラー画像 3.4 カラー画像 • 加法混色性 ・ 光源側を見た場合。 ディスプレー、星の光、イルミネーション等 3.4 カラー画像 3.4 カラー画像 • 減法混色性 ・ 反射光側を見た場合。 草木の色、絵画、宝石、印刷物など 3.4 カラー画像 コラム(寝ていてもOK) • 宝石について • その価値について • 希少性(少なすぎても×)、色、堅牢性 後は流行とか、カット 3.4 カラー画像 コラム(寝ていてもOK) • 宝石(結晶性の鉱物など)について • その価値について • 希少性(少なすぎても×)、色、堅牢性 後は流行とか、カット 実際は同じ鉱物(化学組成式)でも 色が違う(減法混色性)だけで宝石の名前が 違うことがある 3.4 カラー画像 コラム(寝ていてもOK) • コランダムグループ: ルビー、サファイア 緑柱石(ベリル)グループ: • エメラルド、アクアマリン、モルガナイト、 ヘリオドール 石英(クォーツ) • 水晶、シトリン、アメシスト など 結晶構造に不純物の混合によって発生 3.4 カラー画像 3.5 ディジタル画像系列(動画像) • 1枚の画像を獲得・表示する時間 ・フレーム周期 ・1秒間辺りのフレーム数(フレーム周期) 3.5 動画像 3.5 ディジタル画像系列(動画像) • 動画像にもエイリアシング 高速走行中に隣の車のタイヤ(ホイール) が静止して見える 扇風機の羽が止まって見えたり、逆方向に ゆっくり回っているように見えたり 3.5 動画像 3.6 ディジタル画像の品質 • 適切な処理アルゴリズムの選択 画像の品質の評価 が重要 品質が良い、悪いはどうやって判断? 3.6 画像の品質 3.6 ディジタル画像の品質 • 画像の品質の評価 ・濃淡情報 ・空間的情報 に注目される。 3.6 画像の品質 3.6 ディジタル画像の品質 • 画像の品質の評価 ・濃淡情報 : ヒストグラム ・空間的情報 : 空間周波数変換 それぞれ画像情報を別の形で表現 3.6 画像の品質 3.6.1 濃淡ヒストグラム • 濃淡情報の評価に頻繁に使用 画素の階調値分布をグラフ化 輝度の集中度が観察可能 3.6.1 ヒストグラム 3.6.1 濃淡ヒストグラム • 濃淡情報の評価に頻繁に使用 ダイナミックレンジを読み取れる 白とび、黒つぶれが分かる! 3.6.1 ヒストグラム ダイナミックレンジ補正 • ディジタルカメラのダイナミックレンジ補正 3.6.1 ヒストグラム ダイナミックレンジ補正の効果 • 何となくぼやけてしまった富士山 3.6.1 ヒストグラム ダイナミックレンジ • ヒストグラムを確認すると… 3.6.1 ヒストグラム ダイナミックレンジ • ダイナミックレンジを調整した結果 3.6.1 ヒストグラム 3.6.2 空間周波数変換 • フーリエ変換が有名 画像とは…基本空間周波数成分の組み合 わせで成り立っているともいえる。 3.6.2 空間周波数変換 3.6.2 空間周波数変換 • フーリエ変換した結果 3.6.2 空間周波数変換 3.6.2 空間周波数変換 • フーリエ変換した結果 3.6.2 空間周波数変換