Integration Lecture
Download
Report
Transcript Integration Lecture
Numerical Integration
Basic Numerical Integration
We want to find integration of functions of various
forms of the equation known as the Newton Cotes
integration formulas.
Trapezoidal Rule
Simpson’s Rule
1/3 Rule
3/8 Rule
Midpoint
Gaussian Quadrature
USC
Basic Numerical Integration
• Weighted sum of function values
b
a
n
f ( x )dx c i f ( x i )
i 0
f(x)
x0
c0 f ( x 0 ) c 1 f ( x 1 ) c n f ( x n )
x1
xn-1
xn
USC
x
Numerical Integration
Idea is to do integral in small parts, like the way you first learned
integration - a summation
Numerical methods just try to make it faster and more accurate
12
10
8
6
4
2
0
3
5
7
9
11
13
15
USC
Numerical Integration
Newton-Cotes Closed Formulae -- Use
both end points
Trapezoidal Rule : Linear
Simpson’s 1/3-Rule : Quadratic
Simpson’s 3/8-Rule : Cubic
Boole’s Rule : Fourth-order
Newton-Cotes Open Formulae -- Use only
interior points
midpoint rule
USC
Trapezoid Rule
Straight-line approximation
b
a
1
f ( x )dx c i f ( x i ) c 0 f ( x 0 ) c 1 f ( x 1 )
i 0
h
f ( x 0 ) f ( x 1 )
2
f(x)
L(x)
x0
x1
x
USC
Trapezoid Rule
Lagrange interpolation
x x0
x x1
L( x)
f ( x0 )
f ( x1 )
x0 x1
x1 x0
xa
dx
let a x 0 , b x1 ,
, d ; h b a
ba
h
x a 0
L( ) (1 ) f (a ) ( ) f (b)
x b 1
USC
Trapezoid Rule
b
a
Integrate to obtain the rule
b
1
a
0
f ( x)dx L( x)dx h L( )d
1
1
0
0
f (a)h (1 )d f (b)h d
f (a)h (
2
2
1
) f (b)h
0
2 1
2
0
h
f (a ) f (b)
2
USC
Example:Trapezoid Rule
Evaluate the integral
Exact solution
4
0
4
0
xe 2 x dx
4
x 2x 1 2x
xe dx e e
4
2
0
2x
1
1 2x
e ( 2 x 1 ) 5216.926477
4
0
Trapezoidal Rule
I
4
0
40
f ( 0 ) f ( 4 ) 2( 0 4e 8 ) 23847.66
xe dx
2
5216.926 23847.66
357.12%
5216.926
2x
USC
Simpson’s 1/3-Rule
Approximate the function by a parabola
b
a
2
f ( x )dx c i f ( x i ) c 0 f ( x 0 ) c 1 f ( x 1 ) c 2 f ( x 2 )
i 0
h
f ( x 0 ) 4 f ( x 1 ) f ( x 2 )
3
f(x)
x0
h
L(x)
x1
h
x2
x
USC
Simpson’s 1/3-Rule
( x x 0 )( x x 2 )
( x x 1 )( x x 2 )
L( x )
f ( x0 )
f ( x1 )
( x 0 x 1 )( x 0 x 2 )
( x 1 x 0 )( x 1 x 2 )
( x x 0 )( x x 1 )
f ( x2 )
( x 2 x 0 )( x 2 x 1 )
ab
2
x x1
ba
dx
h
,
, d
2
h
h
x x 0 1
x x1 0
x x 1
2
let
x0 a , x 2 b , x1
L( )
( 1 )
2
f ( x0 ) ( 1 ) f ( x1 )
2
( 1 )
2
f ( x2 )
USC
Simpson’s 1/3-Rule
b
a
Integrate the Lagrange interpolation
1
h 1
f(x)dx h L( )dξ f(x 0 ) ξ(ξ 1 )dξ
1
2 1
1
h 1
2
f(x 1 )h ( 1 ξ )dξ f(x 2 ) ξ(ξ 1 )dξ
0
2 1
1
1
3
2
3
h ξ
ξ
ξ
f(x 0 ) (
) f(x 1 )h(ξ
)
2 3
2 1
3 1
1
h ξ
ξ
f(x 2 ) (
)
2 3
2 1
3
b
a
2
h
f(x)dx f(x 0 ) 4f(x 1 ) f(x 2 )
3
USC
Simpson’s 3/8-Rule
Approximate by a cubic polynomial
b
a
3
f ( x )dx c i f ( x i ) c0 f(x0 ) c 1 f(x 1 ) c 2 f(x 2 ) c 3 f(x 3 )
i 0
3h
f ( x0 ) 3 f ( x1 ) 3 f ( x 2 ) f ( x 3 )
8
L(x)
x0
h
f(x)
x1
h
x2
h
x3
x
USC
Simpson’s 3/8-Rule
( x x 1 )( x x 2 )( x x 3 )
L( x )
f ( x0 )
( x 0 x 1 )( x 0 x 2 )( x 0 x 3 )
( x x 0 )( x x 2 )( x x 3 )
f ( x1 )
( x 1 x 0 )( x 1 x 2 )( x 1 x 3 )
b
a
( x x 0 )( x x 1 )( x x 3 )
f ( x2 )
( x 2 x 0 )( x 2 x 1 )( x 2 x 3 )
( x x 0 )( x x 1 )( x x 2 )
f ( x3 )
( x 3 x 0 )( x 3 x 1 )( x 3 x 2 )
f(x)dx
b
a
b-a
L(x)dx ; h
3
3h
f ( x 0 ) 3 f ( x 1 ) 3 f ( x 2 ) f ( x 3 )
8
USC
Example: Simpson’s Rules
Evaluate the integral
Simpson’s 1/3-Rule
4
I xe2 x dx
0
4
0
xe 2 x dx
h
f (0) 4 f (2) f (4)
3
2
0 4(2e4 ) 4e8 8240.411
3
5216.926 8240.411
57.96%
5216.926
Simpson’s 3/8-Rule
4
I xe 2 x dx
0
3h
4
8
f
(0)
3
f
(
)
3
f
(
)
f
(4)
8
3
3
3(4/3)
0 3(19.18922) 3(552.33933) 11923.832 6819.209
8
5216.926 6819.209
30.71%
5216.926
USC
Midpoint Rule
Newton-Cotes Open Formula
b
a
f ( x )dx ( b a ) f ( x m )
ab
(b a )
(b a )f (
)
f ( )
2
24
3
f(x)
a
xm
x
b
USC
Two-point Newton-Cotes
Open Formula
Approximate by a straight line
b
a
ba
( b a )3
f ( x1 ) f ( x 2 )
f ( x )dx
f ( )
2
108
f(x)
x0
h
x1
h
x2
h
x3
x
USC
Three-point Newton-Cotes Open
Formula
Approximate by a parabola
b
a
ba
2 f ( x 1 ) f ( x 2 ) 2 f ( x 3 )
f ( x )dx
3
7 ( b a )5
f ( )
23040
f(x)
x0
h
x1
h
x2
h
x3
h
x4
USC
x
Better Numerical Integration
Composite integration
Composite Trapezoidal Rule
Composite Simpson’s Rule
Richardson Extrapolation
Romberg integration
USC
Apply trapezoid rule to multiple segments over
integration limits
Two segments
Three segments
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
3
5
7
9
11
13
15
3
Four segments
5
7
9
11
13
15
Many segments
7
7
6
6
5
5
4
4
3
3
2
2
1
1
0
0
3
5
7
9
11
13
15
3
5
7
9
11
13
15
USC
Composite Trapezoid Rule
b
a
x1
x2
xn
x0
x1
xn 1
f(x)dx f(x)dx f(x)dx
f(x)dx
h
f(x0 ) f(x 1 ) h f(x 1 ) f(x 2 ) h f(x n1 ) f(x n )
2
2
2
h
f(x 0 ) 2 f(x 1 ) 2f(xi ) 2 f ( x n1 ) f ( x n )
2
f(x)
ba
h
n
x0
h
x1
h
x2
h
x3
h
x4
USC
x
Composite Trapezoid Rule
Evaluate the integral
4
I xe 2 x dx
0
h
f ( 0 ) f ( 4 ) 23847.66
357.12%
2
h
n 2 , h 2 I f ( 0 ) 2 f ( 2 ) f ( 4 ) 12142.23 132.75%
2
h
n 4 ,h 1 I f ( 0 ) 2 f ( 1 ) 2 f ( 2 )
2
2 f ( 3 ) f ( 4 ) 7288.79
39.71%
h
n 8 , h 0.5 I f ( 0 ) 2 f ( 0.5 ) 2 f ( 1 )
2
2 f ( 1.5 ) 2 f ( 2 ) 2 f ( 2.5 ) 2 f ( 3 )
2 f ( 3.5 ) f ( 4 ) 5764.76
10.50%
h
n 16 , h 0.25 I f ( 0 ) 2 f ( 0.25 ) 2 f ( 0.5 )
2
2 f ( 3.5 ) 2 f ( 3.75 ) f ( 4 )
5355.95
2.66%
n 1, h 4 I
USC
Composite Trapezoid
Example
2
1
1 1 x dx
x
1.00
1.25
1.50
1.75
2.00
f(x)
0.5000
0.4444
0.4000
0.3636
0.3333
USC
Composite Trapezoid Rule with
Unequal Segments
4
Evaluate the integral
I xe 2 x dx
0
h1 = 2, h2 = 1, h3 = 0.5, h4 = 0.5
2
3
3.5
0
2
3
I f ( x)dx f ( x)dx
4
f ( x)dx f ( x)dx
3.5
h1
h2
f (0) f (2) f (2) f (3)
2
2
h3
h4
f (3) f (3.5) f (3.5) f (4)
2
2
2
1 4
0.5 6
4
6
0 2e 2e 3e
3e 3.5e 7
2
2
2
0.5
3.5e 7 4e8 5971.58
14.45%
2
USC
Composite Simpson’s Rule
Piecewise Quadratic approximations
ba
h
n
f(x)
…...
x0 h x1 h x2 h x3 h
x4
xn-2 xn-1
xn
USC
x
Composite Simpson’s Rule
Multiple applications of Simpson’s rule
b
a
x2
x4
xn
x0
x2
xn 2
f(x)dx f(x)dx f(x)dx
f(x)dx
h
h
f(x 0 ) 4 f(x 1 ) f(x 2 ) f(x 2 ) 4 f(x 3 ) f(x 4 )
3
3
h
f(x n 2 ) 4f(xn 1 ) f(x n )
3
h
f(x 0 ) 4 f(x 1 ) 2f(x2 ) 4 f(x 3 ) 2f(x4 )
3
4 f(x 2i - 1 ) 2 f ( x 2 i ) 4f(x2i 1 )
2 f ( x n 2 ) 4 f ( x n 1 ) f ( x n )
USC
Composite Simpson’s Rule
4
I xe 2 x dx
Evaluate the integral
n = 2, h = 2
0
h
I f ( 0 ) 4 f ( 2 ) f ( 4 )
3
2
0 4( 2e 4 ) 4 e 8 8240.411 57.96%
3
n = 4, h = 1
h
I f ( 0 ) 4 f ( 1 ) 2 f ( 2 ) 4 f ( 3 ) f ( 4 )
3
1
0 4 ( e 2 ) 2( 2 e 4 ) 4 ( 3e 6 ) 4 e 8
3
5670.975 8.70%
USC
Composite Simpson’s
Example
2
1
1 1 x dx
x
1.00
1.25
1.50
1.75
2.00
f(x)
0.5000
0.4444
0.4000
0.3636
0.3333
USC
Composite Simpson’s Rule with
Unequal Segments
4
I xe 2 x dx
Evaluate the integral
h1 = 1.5, h2 = 0.5
3
4
0
3
0
I f ( x)dx f ( x)dx
h1
f (0) 4 f (1.5) 2 f (3)
3
h2
f (3) 4 f (3.5) 2 f (4)
3
1.5
0.5 6
3
6
0 4(1.5e ) 3e
3e 4(3.5e 7 ) 4e8
3
3
5413.23 3.76%
USC
Richardson Extrapolation
Use trapezoidal rule as an example
b
a
subintervals: n = 2j = 1, 2, 4, 8, 16, ….
h
f(x)dx f(x0 ) 2 f(x 1 ) 2 f ( x n1 ) f ( x n ) c j h 2 j
2
j 1
j n Formula
h
0 1
I 0 f ( a ) f ( b )
2
h
1 2
I 1 f ( a ) 2 f ( x 1 ) f ( b )
4
h
2 4
I 2 f ( a ) 2 f ( x 1 ) 2 f ( x 2 ) 2 f ( x 3 ) f ( b )
8
h
f ( a ) 2 f ( x 1 ) 2 f ( x 7 ) f ( b )
3 8
I3
16
h
j 2 j I j j f ( a ) 2 f ( x 1 ) 2 f ( x n 1 ) f ( b )
2
USC
Richardson Extrapolation
For trapezoidal rule
b
A f ( x )dx A( h ) c 1 h 2
a
A A( h ) c 1 h 2 c 2 h 4
h
h 2
h 4
A
A
(
)
c
(
)
c
(
)
1
2
2
2
2
1
h
c2 4
A 4 A( ) A( h ) h B( h ) b2 h 4
3
2
4
A B ( h ) b2 h 4
1
h
C
(
h
)
16
B
(
)
B
(
h
)
h
h 4
15
2
A
B
(
)
b
(
)
2
2
2
kth level of extrapolation
4 C ( h/2) C ( h )
D( h )
4k 1
k
USC
Romberg Integration
Accelerated Trapezoid Rule
I j ,k
4 k I j 1 ,k I j ,k
4 1
k
; k 1, 2, 3,
Trapezoid
Simpson' s
Boole' s
k 0
O( h 2 )
k1
O( h 4 )
k2
O( h 6 )
k3
O( h 8 )
k4
O ( h 10 )
h
I 0 ,0
I 0 ,1
I 0,2
I 0,3
I 0 ,4
h/ 2
h/ 4
I 1,0
I 2 ,0
I 1, 1
I 2 ,1
I 1, 2
I 2,2
I 1, 3
h/ 8
I 3 ,0
I 3 ,1
h / 16
I 4 ,0
4 I j 1,0 I j ,0
16 I j 1, 1 I j , 1
64 I j 1, 2 I j , 2
256I j 1, 3 I j , 3
3
15
63
255
USC
Romberg Integration
Accelerated Trapezoid Rule
4
I xe 2 x dx 5216.926477
0
Trapezoid Simpson' s
k 0
k1
h4
h2
h1
h 0.5
h 0.25
O( h 2 )
23847.7
12142.2
7288.79
5764.76
5355.95
2.66%
O( h 4 )
8240.41
5670.98
5256.75
5219.68
Boole' s
k2
O( h 6 )
5499.68
5229.14
5217.20
k3
k4
O( h 8 )
5224.84
5217.01
O( h 10 )
5216.95
0.0527% 0.0053% 0.00168% 0.00050%
USC
Romberg Integration
Example
2
1
1 1 x dx
x
1.00
1.25
1.50
1.75
2.00
f(x)
0.5000
0.4444
0.4000
0.3636
0.3333
USC
Gaussian Quadratures
Newton-Cotes Formulae
use evenly-spaced functional values
Gaussian Quadratures
select functional values at non-uniformly
distributed points to achieve higher accuracy
change of variables so that the interval of
integration is [-1,1]
Gauss-Legendre formulae
USC
Gaussian Quadrature on [-1, 1]
1
1
n
f ( x )dx c i f ( x i ) c 1 f ( x 1 ) c 2 f ( x 2 ) c n f ( x n )
i 1
n2:
1
1
f(x)dx
c 1 f(x 1 ) c 2 f(x 2 )
-1
x1
x2
1
Choose (c1, c2, x1, x2) such that the method
yields “exact integral” for f(x) = x0, x1, x2, x3
USC
Gaussian Quadrature on [-1, 1]
n2:
1
1
f(x)dx c1 f(x1 ) c 2 f(x 2 )
Exact integral for f = x0, x1, x2, x3
f
f
f
f
Four equations for four unknowns
1
1 1dx 2 c 1 c 2
1
1
x xdx 0 c 1 x 1 c 2 x 2
1
2
x x dx c 1 x 12 c 2 x 22
1
3
1
2
2
1
x x 3 dx 0 c 1 x 13 c 2 x 23
3
1
1
I f ( x )dx f (
1
1
3
c 1 1
c 1
2
1
x1
3
1
x2 3
) f (
1
3
)
USC
Gaussian Quadrature on [-1, 1]
n3:
-1
1
1
x1
f ( x )dx c1 f ( x1 ) c 2 f ( x 2 ) c 3 f ( x 3 )
x2
x3
1
Choose (c1, c2, c3, x1, x2, x3) such that
the method yields “exact integral” for
f(x) = x0, x1, x2, x3,x4, x5
USC
Gaussian Quadrature on [-1, 1]
1
f 1 xdx 2 c1 c2 c3
1
1
f x xdx 0 c1 x1 c2 x2 c3 x3
1
1
2
f x x dx c1 x12 c2 x22 c3 x32
3
1
2
2
1
f x 3 x 3 dx 0 c1 x13 c2 x23 c3 x33
1
1
2
f x x dx c1 x14 c2 x24 c3 x34
5
1
4
4
c1 5 / 9
c 8 / 9
2
c3 5 / 9
x1 3 / 5
x2 0
x3 3 / 5
1
f x 5 x 5 dx 0 c1 x15 c2 x25 c3 x35
1
USC
Gaussian Quadrature on [-1, 1]
Exact integral for f = x0, x1, x2, x3, x4, x5
I
1
1
5
3
8
5
3
f ( x )dx f (
) f (0 ) f (
)
9
5
9
9
5
USC
Gaussian Quadrature on [a, b]
Coordinate transformation from [a,b] to [-1,1]
ba
ba
t
x
2
2
x 1 t a
x 1 t b
a
b
a
t1
f ( t )dt
1
1
t2
b
1
ba
ba ba
f(
x
)(
)dx g( x )dx
1
2
2
2
USC
Example: Gaussian Quadrature
4
Evaluate I te 2 t dt 5216.926477
0
Coordinate transformation
ba
ba
t
x
2 x 2 ; dt 2dx
2
2
4
1
I te dt ( 4 x 4 )e
2t
0
4 x4
1
1
dx f ( x )dx
1
Two-point formula
1
I f ( x )dx f (
1
1
) f (
1
) (4
4
4
)e
3
3
3
9.167657324 3468.376279 3477.543936
4
3
(4
4
4
)e
4
3
3
( 33.34% )
USC
Example: Gaussian Quadrature
Three-point formula
5
8
5
I f ( x )dx f ( 0.6 ) f ( 0 ) f ( 0.6 )
1
9
9
9
5
8
5
4 0.6
4
( 4 4 0.6 )e
( 4 )e ( 4 4 0.6 )e 4 0.6
9
9
9
5
8
5
( 2.221191545) ( 218.3926001) ( 8589.142689)
9
9
9
4967.106689
( 4.79% )
1
Four-point formula
I f ( x )dx 0.34785 f ( 0.861136) f ( 0.861136)
1
1
0.652145 f ( 0.339981) f ( 0.339981)
5197.54375
( 0.37% )
USC