Transcript Slide 1

Detector Design Principles
2
• Ionization chambers (gas and
solid-state)
• Proportional counters
• Avalanche counters
• Geiger-Müller counters
• Cloud/bubble chambers
• Track detectors
Radiation Detectors
Ionization Detectors
Associated Techniques
•
•
•
•
Scintillation Detectors
• Phosphorescence counters
• Fluorescence counters
(inorganic solid
scintillators, organic solid
and scintillators)
• Čherenkov counters
Photo sensors and multipliers
Charged-coupled devices
Electronic pulse shape analysis
Processing/acquisition electronics
W. Udo Schröder, 2009
Primary Ionization Track (Gases)
incoming particle
ionization track 
ion/e- pairs
Minimum-ionizing particles
(Sauli. IEEE+NSS 2002)
Different counting gases
Helium
GAS (STP)
Argon
Xenon
CH4
DME
0.32
2.4
6.7
1.5
3.9
<n> (ion pairs/cm)
6
25
44
16
55
Radiation Detectors
3
dE/dx ( keV /cm )
e-
I+
Statistical ionization process: Poisson statistics
Detection efficiency e depends on average number
<n> of ion pairs
e  1e
DE  <n>
≈Linear
for DE«E
W. Udo Schröder, 2009
 n
GAS (STP)
Helium
Argon
Higher e for slower particles
thickness
e
1 mm
45
2 mm
70
1 mm
91.8
2 mm
99.3
Driven Charge Transport in Gases
Electric field E = DU/Dx separates +/- charges
(q=ne+, e-)
Pe(x)
Charge Diffusion in Electric Field
dN

dx
5
t0
Radiation Detectors
Pe(x)
x
t1 >t0
x
Pe(x)
t2 >t1
x
E

 ( x  w  t )2 
 exp  

4
D

t
4Dt


N0
1 F
e
 
E   drift velocity
2m
2m
   v mean time between collisions
w
kT
w
 :
mobility
e
E
Mass dependence !
D 
FluctuationDissipation
Theorem
Cycle: acceleration – scattering/ionization
Drift (w) and diffusion (D) depend on field
strength E and gas pressure p (or r).
w  w(E p); D  D(E p)
x
W. Udo Schröder, 2009
Further ionization possible  Amplification
Direct-Ionization and Amplification Counters
Single-wire gas
counter (PC)
signal
gas
7
C
+
Radiation Detectors
-
W. Udo Schröder, 2009
R
-
U0
counter gas
+
Signal Generation in Ionization Counters
Primary ionization: Gases I  20-30 eV/IP, Si: I  3.6 eV/IP
Radiation Detectors
d
Capacitance C
8
-
Ge: I  3.0 eV/IP
x
Energy loss De: n= nI =ne= De/I number
of primary ion pairs n at x0, t0
x0
Force: Fe =-e·E= -e·U0/d = -FI
Energy content of detector capacitor C:
+
R
0
DU(t)
Cs Signal
U0
C 2
U0  U 2 t   CU  DU t 
0

2
2) W t   neFe  xe t   x0   nI FI  x I t   x0 
neU0
 x I t   xe t 

d
1) W t  
w
1)  2)
DU t  
W. Udo Schröder, 2009
W t 
CU0


t  t
 t0 
ne  
w  t   w   t    t  t0 

Cd 
Time-Dependent Signal Shape
Total signal: e & I components
DU t  
t 
De
w  t   w  t  t  t0 
Cd
10 3 w  t 
Both
components
measure De.
Both
components
measure position
of primary ion
pairs
9
w

Drift velocities
(w+, w->0)
Radiation Detectors
De
C
DU(t)
De x0
C d
x0 = w-(te-t0)
For fast counting
use only electron
component.
t0
W. Udo Schröder, 2009
te~s
tI~ms
t
Make position
independent with
Frisch Grid
Frisch Grid Ion Chambers
Shielding e- charge-collecting
electrode from primary
ionization track
 e- signal no x dependence
x
Radiation Detectors
11
cathode
d
x0
particle
Wire mesh (Frisch grid) at
position xFG @ UFG=const.
 e- produce signal only
inside sensitive anode-FG
volume, ions are not “seen”.
dFG
0
De
DU  t  
w  t  t  tFG 
CdFG
Anode/FG signals out
W. Udo Schröder, 2009
not x dependent.
“Drift chambers” exploit
x-dependence
Electronic Pulse Shape
t
event 1
Intrinsic pulse shape for PC :
event 2
time t , PC wire length L
12
DU ( t ) 
event 4
event 4
event 2
event 1
DU
Radiation Detectors
Use only electronic pulse
component (differentiate
electronic signal in pre-amp)
t0  e / CU 0 , mobility   wdrift / E
e  counter gas dielectric constant
t
Differentiation
DU
W. Udo Schröder, 2009
C
DU
R
q
t
 ln(1  )
4e L
t0
DU
long decay time of pulse 
pulse pile up, summary
information
differentiate electronically,
RC-circuitry in shaping amplifier,
individual information
for each event (= incoming
particle)
Bragg-Curve Sampling Counters
Sampling Ion Chamber with divided anode
13
DE1 DE2 Eresidual Anodes
FG
Radiation Detectors
isobutane
50T
DE
W. Udo Schröder, 2009
Sample Bragg
energy-loss curve
at different points
along the particle
trajectory
improves particle
x identification.
ICs have excellent
resolution in E, Z,
A of charged
particles but are
“slow” detectors.
Gas IC need very
stable HV and gas
handling systems.
DE (channels)
Radiation Detectors
14
IC Performance
Energy resolution
 e2  F nip  F
De
I
F<1 Fano factor
Eresidual (channels)
W. Udo Schröder, 2009
Proportional Counter
gas
counter
gas
C
Voltage U0  (300-500) V
R
-
U0
+
RA
W. Udo Schröder, 2009
signal
+
-
Anode Wire
Radiation Detectors
15
Rc
Anode wire: small radius
RA  50 m or less
Field at r from wire
RI
E (r ) 
E(RI)=UI
RI
U0
1

ln( RC RA ) r
Avalanche RI RA, several mean
free paths needed
e- q+
Pulse height mainly due to
positive ions (q+)
Solid-State IC
n
Radiation Detectors
17
c
+
+
-
Solids have larger density  higher stopping
power dE/dx  more ion pairs, better
resolution, smaller detectors (also more
damage and little regeneration 
max accumulated dose ~ 1023 particles
+
Semiconductor n-, p-, i- types
i
p
cs
R
Si, Ge, GaAs,.. (for e-, lcp, g, HI)
DU(t)
Band structure of solids:
E
U0
e-
Capacitance Si :
2.2

C 
3.7
Conduction
EF
h+
rnU0 pF mm2
-
r pU0 pF mm2
Bias voltage U0 creates
charge-depleted zone
W. Udo Schröder, 2009
Valence
+
Ionization lifts e- up
to conduction band
 free charge
carriers, produce
DU(t).
Surface Barrier Detectors
20
EF
Metal
Junction
CB Semi
conductor
Different Fermi energies adjust to on contact.
Thin metal film on Si surface produces space
charge, an effective barrier (contact potential)
and depleted zone free of carriers. Apply reverse
bias to increase depletion depth.
Radiation Detectors
VB
Insulation
Metal film
Insulating
Mount
Silicon wafer
depleted
dead layer
Ground
+Bias
Front: Au Back: Al
evaporated electrodes
W. Udo Schröder, 2009
Possible:
depletion depth ~ 300
dead layer dd  1
V ~ 0.5V/
Over-bias reduces dd
Metal case
Connector
ORTEC
HI detector
Charge Collection Efficiency in SSDs
High ionization density at low electric fields: Edeposit > Eapp
Lower apparent energy due to charge recombination, trapping.
Low ionization density (or high electric fields): Edeposit  Eapp
Typical charge collection times: t ~ (10-30)ns
21
Pulse height defect
Moulton et al.
EPhD : Edeposit  Eapp
Fit :


Radiation Detectors
a( Z , A)
EPhD Edeposit  10 b(Z , A)  Edeposit
a( Z )  2.230  10
5 2
Z  0.5682
b( Z )  14.25 / Z  0.0825
a( A)  3.486  10
6 2
A  0.5728
b( A)  28.40 / A  0.0381
Affects charge collection
time  signal rise time.
Exploit for A, Z identification
W. Udo Schröder, 2009
Position-Sensitive Semiconductor Detectors
Gerber et al., IEEE TNS24,182(1977)
Double-sided x/y matrix
detector, resistive readout.
xn
Q1  Q 
Lx
22
R
Radiation Detectors
y
R
Q
x
R
R
~2000 Wcm, 300 U0160V
W. Udo Schröder, 2009
ym
Q3  Q 
Ly
(Lx  xn )
Q2  Q 
Lx
Q4  Q 
(Ly  ym )
Ly
Q1  Q2  Q3  Q4  Q  DE
Si-Strip Detectors
Radiation Detectors
23
Typically (300-500) thick.
Fully depleted, thin dead layer.
Annular:
16 bins (“strips”) in polar (q) ,
4 in azimuth (f) (Micron Ltd.)
Rectangular with 7 strips
W. Udo Schröder, 2009
Ge gray Detectors (SS-IC)
Ge detectors for g-rays use p-i-n Ge junctions.
Because of small gap EG, cool to -77oC (LN2)
Radiation Detectors
24
Ge Cryostate (Canberra)
W. Udo Schröder, 2009
Ge cryostate geometries (Canberra)
Properties of Ge Detectors: Energy Resolution
Superior energy resolution,
compared to NaI
Radiation Detectors
25
DEg ~ 0.5keV @ Eg =100keV
W. Udo Schröder, 2009
Size=dependent mall detection
efficiencies of Ge detectors 
10% solution: bundle in 4arrays GammaSphere,Greta
EuroGam, Tessa,…
Townsend (Gas) Avalanche Amplification
Gas or SS avalanche counters
_
Avalanche
Region
26
Radiation
U0
M
Radiation Detectors
IC Region
Nonlinear
Region
d
+
U0~kV/cm
I
U0
Amplification M
W. Udo Schröder, 2009
M
n
1

i(t )dt ; nip  primary IP

nip
nip
 :  nM  d 1.Townsend coefficient
Avalanche Formation
Townsend Coefficient
Electron-ion pairs through
gas ionization
dn    n  dx
n( x )  n0  e x for   const
Electrons in outer shells are more readily
removed, ionization energies are smaller
for heavier elements.
n( x )  n0  exp
  ( x)dx
x
0
Avalanche Quenching
A. Sharma and F. Sauli, Nucl. Instr. and Meth. A334(1993)420
28
in Argon
Reduce and
energy of ions by
collisions with
complex organic
molecules (CH4, …).
Radiation Detectors
Excitation of
rotations and
vibrations already
at low ion energies
Organic vapors = “self quenching”
CH4
W. Udo Schröder, 2009
Parallel Plate Counters: t-Resolution
cathode sensitive
layer
eanode +
R
Charges produced at
different positions along
the particle track are
differently amplified.
 non-linearity nip(DE)
W. Udo Schröder, 2009
ff
ff
U
p
PPAC
+
PPAC
Radiation Detectors
29
d~1/
PPACs for good time
resolution, U(p,f)f
Sparking and Spark Counters
30
/p
g
Different cathode
materials
Impact ionization
Probability g
+
d
Radiation Detectors
Amplification by
impact ionization
n
e d
M 
n0 1  g  e d  1
Prevent spark by reducing for ions:
collisions with large organic molecules 
quenching additives, self-quenching gases
W. Udo Schröder, 2009
Sparking :g  e d  1
p (101  103 ) Torr
31
Radiation Detectors
W. Udo Schröder, 2009
Avalanche Quenching
A. Sharma and F. Sauli, Nucl. Instr. and Meth. A334(1993)420
32
in Argon
Reduce and
energy of ions by
collisions with
complex organic
molecules (CH4, …).
Radiation Detectors
Excitation of
rotations and
vibrations already
at low ion energies
Organic vapors = “self quenching”
CH4
W. Udo Schröder, 2009
Multi-Wire Proportional Counters
Magic Gas: Ar(75%), isobutane (24.5%), freon (0.5%)
HV:kV/cm
Important
for detection of high-energy
particles, beam profile,..
(Charpak 1968-80)
33
Equipotential Lines
Radiation Detectors
dac
Anode Wires
s
Anode
Wires
Cathode
Wire
Planes
Field at ( x, y ) (0, 0)
C
  2
2 
V ( x, y )  U 0
ln  4  sin
x  sinh
4e  
s
s
2e
Capacitance C 
; d ac
 d ac s  ln( d s)
W. Udo Schröder, 2009

y 

s
Field strength close
to anode wires:
d
V(x,y)  1/r
Position-Sensitive Semiconductor Detectors
Gerber et al., IEEE TNS24,182(1977)
Double-sided x/y matrix
detector, resistive readout.
xn
Q1  Q 
Lx
34
R
Radiation Detectors
y
R
Q
x
R
R
~2000 Wcm, 300 U0160V
W. Udo Schröder, 2009
ym
Q3  Q 
Ly
(Lx  xn )
Q2  Q 
Lx
Q4  Q 
(Ly  ym )
Ly
Q1  Q2  Q3  Q4  Q  DE
Frisch Grid Ion Chambers
Radiation Detectors
35
x
cathode
d
x0
particle
dFG
0
Anode/FG signals out
W. Udo Schröder, 2009
Suppress position dependence
of signal amplitude by
shielding charge-collecting
electrode from primary
ionization track.
Insert wire mesh (Frisch grid)
at position xFG held constant
potential UFG.
e- produce signal only when
inside sensitive anode-FG
volume, ions are not “seen”.

De
DU  t  
w  t  t  tFG 
CdFG
not x dependent.
x-dependence used in “drift
chambers”.
Electronics: Charge Transport in Capacitors
Simple charge motion, no secondary ionization/amplification
36
q-
U
Radiation Detectors
conducting
electrodes
q+
t Connected to circuitry,
q-
R e
Electronics
W. Udo Schröder, 2009
Charges q+ moving
between parallel
conducting plates of a
capacitor induce tdependent negative images
q- on each plate.
current of e- from negative
electrode is proportional to
charge q+.
Electron Transport
Radiation Detectors
37
Multiple scattering/acceleration produces effective spectrum P(e)
 calculate effective  and :
2 e
  P e  
1

w 
E e 
d
e
D

  e   v  e   P  e  de



3m
e  v  e  
3
W. Udo Schröder, 2009
Simulations
v e   2e m
w- ~ 103 w+
Electron Transport:
Frost et al., PR 127(1962)1621
V. Palladino et al., NIM 128(1975)323
G. Shultz et al., NIM 151(1978)413
S. Biagi, NIM A283(1989)716
http://consult.cern.ch/writeup/garfield/examples/gas/trans2000.html#elec
Radiation Detectors
38
Stability and Resolution
W. Udo Schröder, 2009
• Anisotropic diffusion in electric field (Dperp >Dpar).
• Electron capture by electro+negative gases,
reduces energy resolution
• T dependence of drift: Dw/w  DT/T ~ 10-3
• p dependence of drift: Dw/w  Dp/p ~ 10-3-10-2
• Increasing E fields
 charge multiplication/secondary+ ionization
 loss of resolution and linearity
 Townsend avalanches
Free Charge Transport in Matter
P(x)
1D Diffusion equation  P(x)=(1/N0)dN/dx
t0
39
x
x
Radiation Detectors
P(x)
t1 >t0
x
P(x)

x2 


 exp 
 Gaussian
4Dt

 4D  t 

N0
:
rms
x 2   x  2Dt
1
D   v 
3
D diffusion coefficient,
<v> mean speed
 mean free path
Thermal velocities :
t2 >t1
x
W. Udo Schröder, 2009
dN

dx
v 
8kT

m
D(ion)
8
3
D(e  )
v2
Maxwell+Boltzmann
velocity distribution
Small ion mobility
-
Solid-State Gamma Detectors
V
Radiation Detectors
40
+
W. Udo Schröder, 2009