Transcript Slide 1
Primary Ionization Track (Gases) Oct 2001 2 incoming particle ionization track ion/e- pairs e- I+ Minimum-ionizing particles Linear W. Udo Schröder Argon Xenon CH 4 DME dE/dx ( keV /cm ) 0.32 2.4 6.7 1.5 3.9 n (ion pairs/ cm ) 6 25 44 16 55 Statistical ionization process: Poisson statistics Detection efficiency e depends on average number <n> of ion pairs e 1e DE n Helium GAS (STP) (Sauli. IEEE+NSS 2002) n GAS (STP) Helium Argon thickness e 1 mm 45 2 mm 70 1 mm 91.8 2 mm 99.3 Higher e for slower particles Free Charge Transport in Gases P(x) 1D Diffusion equation P(x)=(1/N0)dN/dx t0 x x Oct 2001 3 P(x) t1 >t0 x P(x) x 2 exp 4 D t 4Dt N0 : rms x 2 x 2Dt 1 D v 3 D diffusion coefficient, <v> mean speed mean free path Thermal velocities : t2 >t1 x W. Udo Schröder dN dx v 8kT m D(ion) 8 3 D(e ) v2 Maxwell+Boltzmann velocity distribution Small ion mobility Driven Charge Transport in Gases P(x) Electric field E = DU/Dx separates +/- charges dN dx t0 x Oct 2001 4 P(x) t1 >t0 x P(x) t2 >t1 x W. Udo Schröder E x ( x w t )2 exp 4 D t 4Dt N0 e E drift velocity 2m v mean collision time w kT D e w : mobility E Cycle: acceleration – scattering Drift and diffusion depend on field strength and gas pressure p (or r). w w(E p); D D(E p) Ion Mobility GAS ION Oct 2001 5 Ar Ar+ CH4 CH4+ Ar+CH4 80+20 CH4+ W. Udo Schröder µ+ (cm2 V-1 s+1) @STP 1.51 2.26 1.61 Ion mobility + = w+/E Independent of field, for given gas at p,T=const. Typical ion drift velocities (Ar+CH4 counters): w+ ~ (10-2 – 10-5) cm/s slow! E. McDaniel and E. Mason The mobility and diffusion of ions in gases (Wiley 1973) Electron Transport Multiple scattering/acceleration produces effective spectrum P(e) calculate effective and : 2 e P e 1 w E e d e D e v e P e de 3m e v e 3 v e 2e m w- ~ 103 w+ Oct 2001 6 Simulations Electron Transport: Frost et al., PR 127(1962)1621 V. Palladino et al., NIM 128(1975)323 G. Shultz et al., NIM 151(1978)413 S. Biagi, NIM A283(1989)716 W. Udo Schröder http://consult.cern.ch/writeup/garfield/examples/gas/trans2000.html#elec Oct 2001 7 Stability and Resolution W. Udo Schröder • Anisotropic diffusion in electric field (Dperp >Dpar). • Electron capture by electro+negative gases, reduces energy resolution • T dependence of drift: Dw/w DT/T ~ 10-3 • p dependence of drift: Dw/w Dp/p ~ 10-3-10-2 • Increasing E fields charge multiplication/secondary+ ionization loss of resolution and linearity Townsend avalanches Electronics: Charge Transport in Capacitors q+ Charges q+ moving between parallel conducting plates of a capacitor influence tdependent negative images q+ on each plate. U 8 conducting plates q+ Oct 2001 t q+ + R e Electronics W. Udo Schröder If connected to circuitry, current of e- would emerge from plate, in total proportionally to charge q+. Signal Generation in Ionization Counters Primary ionization: Gases I 20-30 eV/IP, Si: I 3.6 eV/IP - Capacitance C d Oct 2001 9 + R Cs U0 x Energy loss De: n= nI =ne= De/I number of primary ion pairs n at x0, t0 x0 Force: Fe = -eU0/d = -FI 0 DU(t) Energy content of capacitor C: C 2 U0 U 2 t CU0 DU t 2 2) W t ne Fe xe t x0 + nI FI x I t x0 1) W t neU0 x I t xe t + d 1) + 2) DU t W. Udo Schröder Ge: I 3.0 eV/IP w W t CU0 + t t t0 ne + w t w t t t0 Cd Time-Dependent Signal Shape De + DU t w t w t t t0 Cd Oct 2001 10 w + t De C 103 w t Total signal: e & I components Drift velocities (w+>0, w-<0) Both components measure De and depend on position of primary ion pairs DU(t) x0 = w-(te-t0) De x0 C d Use electron component only for fast counting. t0 W. Udo Schröder te~s tI~ms t Frisch Grid Ion Chambers x cathode d x0 Oct 2001 11 particle dFG 0 Anode/FG signals out W. Udo Schröder Suppress position dependence of signal amplitude by shielding charge-collecting electrode from primary ionization track. Insert wire mesh (Frisch grid) at position xFG held constant potential UFG. e- produce signal only when inside sensitive anode-FG volume, ions are not “seen”. De DU t w t t tFG CdFG not x dependent. x-dependence used in “drift chambers”. Bragg-Curve Sampling Counters Sampling Ion chamber with divided anodes Oct 2001 12 isobutane 50T DE/Dx W. Udo Schröder Sample Bragg energy-loss curve at different points along the particle trajectory improves particle x identification. ICs have excellent resolution in E, Z, A of charged particles but are slow detectors. Gas IC need very stable HV and gas handling systems. DE (channels) Oct 2001 13 IC Performance Energy resolution e2 F nip F De I F<1 Fano factor Eresidual (channels) W. Udo Schröder Solid-State IC + + - n Oct 2001 14 i p Solids have larger density higher stopping power dE/dx more ion pairs, better resolution, smaller detectors (also more damage, max dose ~ 107 particles c + Semiconductor n-, p-, i- types Si, Ge, GaAs,.. (for e-,lcp, g, HI) DU(t) Band structure of solids: R E U0 e- EF Capacitance Si : 2.2 C 3.7 W. Udo Schröder Conduction h+ 2 rnU0 pF mm 2 r pU0 pF mm - Valence + Bias voltage U0 creates charge-depleted zone Ionization lifts eup to conduction band free charge carriers, produce DU(t). Particles and Holes in Semi-Conductors e eC 0 eF Fermion statistics: Conduction Band eeG eV h+ 15 e fe e V volume nh e 23 2m V e fh e ne nh !! 2 2 2 3 2 3 e F e C e G 2 e G 2 for e C : 0 Valence Band Oct 2001 ne e 23 2m V e eF 1 f e 1 + exp e + eG 2 e kT e : fe e 1 + exp kT e + e G 2 h+ : fh e 1 + exp kT Small gaps eG (Ge) large thermal currents. Reduce by cooling. W. Udo Schröder 1 e + eG 2 exp kT kT 25meV e G 1 ne2 ne 2m 2 3 V ne nh 2 2 3 rms e exp G 2kT 2 e e exp G kT conductivity at T Oct 2001 e- Potential Si Bloc 16 Semiconductor Junctions and Barriers eo-+ o+ +o Donor Acceptor ions n p h+ o +o +o + + + - - -o -o -o - o - o - o o+ o+ + o + o +o +o + + - - -o -o -o - o - o - o o+ o+ + o + o +o +o + + - - -o -o -o - o - o - o space charge o o o o o o o o o o o o d Need detector with no free carriers. Si: i-type (intrinsic),n-type, p-type by diffusing Li, e- donor (P, Sb, As), or acceptor ions into Si. Trick: Increase effective gap Junctions diffuse donors and acceptors into Si bloc from different ends. Diffusion at interface e-/h+ annihilation space charge Contact Potential and zone depleted of free charge carriers Depletion zone can be increased by applying “reverse bias” potential Similar: Homogeneous n(p)-type Si with reverse bias U0 also creates 5 carrier-free space dn,p: d 3.3 10 rn, pU0 m n, p up to 1mm possible. rn, p 20 k cm, U0 500V W. Udo Schröder d 70 m Surface Barrier Detectors EF Metal Junction CB Semi conductor Oct 2001 17 VB Different Fermi energies adjust to on contact. Thin metal film on Si surface produces space charge, an effective barrier (contact potential) and depleted zone free of carriers. Apply reverse bias to increase depletion depth. Insulation Metal film Insulating Mount Silicon wafer depleted dead layer Ground +Bias Front: Au Back: Al evaporated electrodes W. Udo Schröder Possible: depletion depth ~ 100 dead layer dd 1 V ~ 0.5V/ Over-bias reduces dd Metal case Connector ORTEC HI detector Charge Collection Efficiency Heavy ions: Edeposit > Eapp = apparent energy due to charge recombination, trapping. Light ions EdepositEapp Typical charge collection times: t~(10-30)ns EPhD : Edeposit Eapp 18 Moulton et al. a( Z , A) Fit : EPhD Edeposit 10b(Z , A) Edeposit a( Z ) 2.230 10 5 2 Z + 0.5682 Oct 2001 b( Z ) 14.25 / Z + 0.0825 a( A) 3.486 10 6 2 A + 0.5728 b( A) 28.40 / A + 0.0381 Affect also collection time lower signal rise time. W. Udo Schröder Ge gray Detectors Ge detectors for g-rays use p-i-n Ge junctions. Because of small gap EG, cool to -77oC (LN2) Oct 2001 19 Ge Cryostate (Canberra) Ge cryostate geometries (Canberra) W. Udo Schröder Properties of Ge Detectors: Energy Resolution Superior energy resolution, compared to NaI Oct 2001 20 DEg ~ 0.5keV @ Eg =100keV W. Udo Schröder Size=dependent mall detection efficiencies of Ge detectors 10% solution: bundle in 4arrays GammaSphere, EuroBall, Tessa,… Townsend Gas Amplification Radiation Nonlinear Region M Oct 2001 21 IC Region U0 d I U0 Amplification M W. Udo Schröder M n 1 i(t )dt nip nip : nM d 1.Townsend coefficient Avalanche Formation Townsend Coefficient Electron-ion pairs through gas ionization dn n dx n( x) n0 e x for const Electrons in outer shells are more readily removed from atom. Ionization energies are smaller for heavier elements. n( x) n0 exp ( x)dx x 0 Sparking and Spark Counters /p g Impact ionization Probability g + d Oct 2001 23 Amplification by impact ionization e d e d 1 Sparking :g e d 1 n M n0 1 g Prevent spark by reducing for ions: collisions with large organic molecules quenching W. Udo Schröder p (101 103 ) Torr Avalanche Quenching A. Sharma and F. Sauli, Nucl. Instr. and Meth. A334(1993)420 Oct 2001 24 in Argon W. Udo Schröder Reduce and energy of ions by collisions with complex organic molecules (CH4, …). Excitation of rotations and vibrations already at low ion energies Effective Ionization Energies Oct 2001 25 Mean energy per ion pair larger than IP because of excitations Large organic molecules have low-lying excited rotational states excitation without ionization through collisions quenching additives W. Udo Schröder Amplification Counters Single-wire gas counter signal gas Oct 2001 26 C W. Udo Schröder + counter gas - U0 + Proportional Counter gas Rc Anode Wire W. Udo Schröder C Voltage U0 (300-500) V R - U0 + RA 27 Oct 2001 + - counter gas signal RI eUI RI e- q+ Anode wire: small radius RA 50 m or less Field at r from wire U0 1 E (r ) ln( RC RA ) r Avalanche RI RA, several mean free paths needed Pulse height mainly due to positive ions (q+) Pulse Shape t event 1 q t DU (t ) ln(1 + ) 4e L t0 event 2 t0 e / CU 0 , mobility wdrift / E e dielectric constant event 4 DU event 4 event 2 event 1 28 DU Oct 2001 Pulse shape : time t , wire length L C R W. Udo Schröder t long decay time of pulse pulse pile up, summary information differentiate electronically, RCcircuitry in shaping amplifier, individual information for each event (= incoming particle)