Transcript Slide 1
Primary Ionization Track (Gases) Det Ionizing Rad 2 incoming particle ionization track ion/e- pairs e- I+ Minimum-ionizing particles Linear W. Udo Schröder, 2004 Argon Xenon CH 4 DME dE/dx ( keV /cm ) 0.32 2.4 6.7 1.5 3.9 n (ion pairs/ cm ) 6 25 44 16 55 Statistical ionization process: Poisson statistics Detection efficiency e depends on average number <n> of ion pairs e 1e DE n Helium GAS (STP) (Sauli. IEEE+NSS 2002) n GAS (STP) Helium Argon thickness e 1 mm 45 2 mm 70 1 mm 91.8 2 mm 99.3 Higher e for slower particles Free Charge Transport in Gases P(x) 1D Diffusion equation P(x)=(1/N0)dN/dx t0 x x Det Ionizing Rad 3 P(x) t1 >t0 x P(x) rms : x 2 x 2Dt 1 D v 3 D diffusion coefficient, <v> mean speed mean free path Thermal velocities : t2 >t1 x W. Udo Schröder, 2004 x 2 exp 4 D t 4Dt N0 dN dx v 8kT m D(ion) 8 3 D(e ) v2 Maxwell+Boltzmann velocity distribution Small ion mobility Driven Charge Transport in Gases P(x) Electric field E = DU/Dx separates +/- charges dN dx t0 x Det Ionizing Rad 4 P(x) t1 >t0 x P(x) t2 >t1 x W. Udo Schröder, 2004 E x (x w t )2 exp 4 D t 4Dt N0 e E drift velocity 2m v mean collision time w kT D e w : mobility E Cycle: acceleration – scattering Drift and diffusion depend on field strength and gas pressure p (or r). w w(E p); D D(E p) Ion Mobility GAS ION Det Ionizing Rad 5 Ar Ar+ CH4 CH4+ Ar+CH4 80+20 CH4+ W. Udo Schröder, 2004 µ+ (cm2 V-1 s+1) @STP 1.51 2.26 1.61 Ion mobility + = w+/E Independent of field, for given gas at p,T=const. Typical ion drift velocities (Ar+CH4 counters): w+ ~ (10-2 – 10-5) cm/s slow! E. McDaniel and E. Mason The mobility and diffusion of ions in gases (Wiley 1973) Electron Transport Multiple scattering/acceleration produces effective spectrum P(e) calculate effective and : 2 e P e 1 w E e d e D e v e P e de 3m e v e 3 Det Ionizing Rad 6 Simulations W. Udo Schröder, 2004 v e 2e m w- ~ 103 w+ Electron Transport: Frost et al., PR 127(1962)1621 V. Palladino et al., NIM 128(1975)323 G. Shultz et al., NIM 151(1978)413 S. Biagi, NIM A283(1989)716 http://consult.cern.ch/writeup/garfield/examples/gas/trans2000.html#elec Det Ionizing Rad 7 Stability and Resolution W. Udo Schröder, 2004 • Anisotropic diffusion in electric field (Dperp >Dpar). • Electron capture by electro+negative gases, reduces energy resolution • T dependence of drift: Dw/w DT/T ~ 10-3 • p dependence of drift: Dw/w Dp/p ~ 10-3-10-2 • Increasing E fields charge multiplication/secondary+ ionization loss of resolution and linearity Townsend avalanches Electronics: Charge Transport in Capacitors q+ Charges q+ moving between parallel conducting plates of a capacitor influence tdependent negative images q+ on each plate. U 8 conducting plates q+ Det Ionizing Rad t W. Udo Schröder, 2004 q+ + R e Electronics If connected to circuitry, current of e- would emerge from plate, in total proportionally to charge q+. Signal Generation in Ionization Counters Primary ionization: Gases I 20-30 eV/IP, Si: I 3.6 eV/IP d + Det Ionizing Rad 9 Capacitance C + x Energy loss De: n= nI =ne= De/I number of primary ion pairs n at x0, t0 x0 Force: Fe = -eU0/d = -FI 0 DU(t) U0 Energy content of capacitor C: C 2 U0 U 2 t CU0 DU t 2 2) W t ne Fe xe t x0 + nI FI x I t x0 1) W t neU0 x I t xe t + d 1) + 2) DU t W. Udo Schröder, 2004 Ge: I 3.0 eV/IP w W t CU0 + t t t0 ne + w t w t t t0 Cd Time+Dependent Signal Shape De + DU t w t w t t t0 Cd Det Ionizing Rad 10 w + t De C 103 w t Total signal: e & I components Drift velocities (w+>0, w+<0) Both components measure De and depend on position of primary ion pairs DU(t) x0 = w-(te-t0) De x0 Cd Use electron component only for fast counting. t0 W. Udo Schröder, 2004 te~s tI~ms t Frisch Grid In Ion Chambers Suppress position dependence of signal amplitude by shielding charge+collecting electrode from primary ionization track. Insert wire mesh (Frisch grid) at position xFG held constant potential UFG. e+ produce signal only when inside sensitive anode+FG volume. Signal De DU t w t t tFG CdFG x 11 d x0 Det Ionizing Rad dFG 0 Anode/FG signals out W. Udo Schröder, 2004 not x dependent. x+dependence used in “drift chambers”. Bragg+Curve Sampling Counters Sampling Ion chamber with divided anodes Det Ionizing Rad 12 isobutane 50T DE/Dx W. Udo Schröder, 2004 Sample Bragg energy+loss curve at different points along the particle trajectory improves particle x identification. ICs have excellent resolution in E, Z, A of charged particles but are slow detectors. Gas IC need very stable HV and gas handling systems. DE (channels) Det Ionizing Rad 13 IC Performance Eresidual (channels) W. Udo Schröder, 2004 Solid+State IC n i p + + + Solids have larger density higher stopping power dE/dx more ion pairs, better resolution, smaller detectors (also more damage, max dose ~ 107 particles + Semiconductors ideal types: n, p, I Si, Ge, GaAs,.. DU(t) Det Ionizing Rad 14 Band structure of solids: E U0 e+ EF h+ + W. Udo Schröder, 2004 Conduction Valence + Bias voltage U0 creates charge+depleted zone Ionization lifts e+ up to conduction band free charge carriers, produce DU(t). Det Ionizing Rad e- Potential Si Bloc 15 Semiconductor Junctions and Barriers eo-+ o+ +o Donor Acceptor ions n p h+ o +o +o + + + - - -o -o -o - o - o - o o+ o+ + o + o +o +o + + - - -o -o -o - o - o - o o+ o+ + o + o +o +o + + - - -o -o -o - o - o - o space charge o o o o o o o o o o o o d Pure “intrinsic” Si can be made to n-type or p-type Si by diffusing edonor (P, Sb, As) and acceptor ions into Si. Junctions occur when both are diffused into Si bloc from different sides. Diffusion at interface e-/h+ annihilation space charge Contact Potential and zone depleted of free charge carriers Depletion zone can be increased by applying “reverse bias” potential Similar: Homogeneous n(p)-type Si with reverse bias U0 also creates carrier-free space dn,p: dn, p 3.3 105 rn, pU0 m rn, p W. Udo Schröder, 2004 20 k cm, U0 500V d 70 m Surface Barrier Detectors Insulation Metal contact Silicon wafer Metal case Det Ionizing Rad 16 Connector W. Udo Schröder, 2004